Explore: Fonctions De Lagrange
Discover books, insights, and more — all in one place.
Learn more about Fonctions De Lagrange with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “fonctions-de-lagrange”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Lagrangian analysis and quantum mechanics
By Jean Leray

“Lagrangian analysis and quantum mechanics” Metadata:
- Title: ➤ Lagrangian analysis and quantum mechanics
- Author: Jean Leray
- Language: English
- Number of Pages: Median: 280
- Publisher: MIT Press - The MIT Press
- Publish Date: 1981 - 1982
- Publish Location: Cambridge, Mass
“Lagrangian analysis and quantum mechanics” Subjects and Themes:
- Subjects: ➤ Asymptotic theory - Differential equations, Partial - Lagrangian functions - Maslov index - Partial Differential equations - Quantum theory - Equacoes Diferenciais - Mecanica Quantica (Teoria Quantica) - Théorie quantique - Équations aux dérivées partielles - Partielle Differentialgleichung - Lagrange-Funktion - Quantenmechanik - Théorie asymptotique - Fonctions de Lagrange - Maslov-Index - Indice de Maslov - Lagrange equations
Edition Identifiers:
- The Open Library ID: OL4272362M - OL10237268M
- Online Computer Library Center (OCLC) ID: 7924566
- Library of Congress Control Number (LCCN): 81018581
- All ISBNs: 0262120879 - 9780262120876
Access and General Info:
- First Year Published: 1981
- Is Full Text Available: Yes
- Is The Book Public: No
- Access Status: Borrowable
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
- Borrowing from Open Library: Borrowing link
- Borrowing from Archive.org: Borrowing link
Online Marketplaces
Find Lagrangian analysis and quantum mechanics at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
2Augmented Lagrangian and operator-splitting methods in nonlinear mechanics
By R. Glowinski

“Augmented Lagrangian and operator-splitting methods in nonlinear mechanics” Metadata:
- Title: ➤ Augmented Lagrangian and operator-splitting methods in nonlinear mechanics
- Author: R. Glowinski
- Language: English
- Number of Pages: Median: 295
- Publisher: ➤ Society for Industrial and Applied Mathematics
- Publish Date: 1989
- Publish Location: Philadelphia
“Augmented Lagrangian and operator-splitting methods in nonlinear mechanics” Subjects and Themes:
- Subjects: ➤ Continuum mechanics - Lagrangian functions - Operator theory - Mécanique des milieux continus - Fonctions de Lagrange - Théorie des opérateurs - Lagrange functies - Operatortheorie - Milieux continus, mécanique des - Lagrange, fonctions de - Opérateurs, théorie des
Edition Identifiers:
- The Open Library ID: OL2192503M
- Online Computer Library Center (OCLC) ID: 617096059 - 19741623
- Library of Congress Control Number (LCCN): 89011319
- All ISBNs: 9780898712308 - 0898712300
Access and General Info:
- First Year Published: 1989
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Augmented Lagrangian and operator-splitting methods in nonlinear mechanics at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
3Effective Lagrangians in quantum electrodynamics
By Walter Dittrich

“Effective Lagrangians in quantum electrodynamics” Metadata:
- Title: ➤ Effective Lagrangians in quantum electrodynamics
- Author: Walter Dittrich
- Language: English
- Number of Pages: Median: 244
- Publisher: Springer-Verlag
- Publish Date: 1985
- Publish Location: Berlin - New York
“Effective Lagrangians in quantum electrodynamics” Subjects and Themes:
- Subjects: ➤ Lagrangian functions - Quantum electrodynamics - Lagrange-Funktion - Kwantumelektrodynamica - Quantenelektrodynamik - Fonctions de Lagrange - Électrodynamique quantique - Lagrange-Formalismus
Edition Identifiers:
- The Open Library ID: OL3022302M
- Online Computer Library Center (OCLC) ID: 11623682
- Library of Congress Control Number (LCCN): 85002527
- All ISBNs: 0387151826 - 9780387151823
Access and General Info:
- First Year Published: 1985
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Effective Lagrangians in quantum electrodynamics at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Joseph-Louis Lagrange
Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangia or Giuseppe Ludovico De la Grange Tournier; 25 January 1736 – 10 April 1813), also reported as Giuseppe
Lagrange reversion theorem
In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions
Lagrange's theorem (group theory)
des fonctions" [Memoir on the number of values of functions], Journal de l'École Polytechnique, 22: 113–194 Jordan's generalization of Lagrange's theorem
Sylvester's formula
formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f (A) of a matrix
Józef Maria Hoene-Wroński
de tous les degrés], par Hoëné Wronski 1812 - Réfutation de la théorie des fonctions analytiques de Lagrange, par Hoëné Wronski 1814 - Philosophie de
Rayleigh dissipation function
"Fonctions de résistance et fonctions de dissipation". Travaux du Séminaire d'Analyse Convexe, Montpellier (Exposé no. 6): (See page 6.3 for "fonction
Polynomial interpolation
a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials. The original use of interpolation polynomials
Adrien-Marie Legendre
Orbites des Comètes, 1805 Exercices de Calcul Intégral, book in three volumes 1811, 1817, and 1819 Traité des Fonctions Elliptiques, book in three volumes
Faà di Bruno's formula
différentiation des fonctions de fonctions. Séries de Burmann, de Lagrange, de Wronski" [On the derivation of functions. Burmann, Lagrange and Wronski series
1797 in science
combine in small, whole number ratios to form compounds. Lagrange publishes his Théorie des fonctions analytiques. Giovanni Battista Venturi describes the