Explore: Weil Group

Discover books, insights, and more — all in one place.

Learn more about Weil Group with top reads curated from trusted sources — all in one place.

Topic Search

Search for any topic

AI-Generated Overview About “weil-group”:


Books Results

Source: The Open Library

The Open Library Search Results

Search results from The Open Library

1Sitzungsberichte Der Heidelberger Akademie Der Wissenschaften

By

Book's cover

“Sitzungsberichte Der Heidelberger Akademie Der Wissenschaften” Metadata:

  • Title: ➤  Sitzungsberichte Der Heidelberger Akademie Der Wissenschaften
  • Author:
  • Number of Pages: Median: 77
  • Publisher: ➤  Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publish Date:

“Sitzungsberichte Der Heidelberger Akademie Der Wissenschaften” Subjects and Themes:

Edition Identifiers:

Access and General Info:

  • First Year Published: 1986
  • Is Full Text Available: No
  • Is The Book Public: No
  • Access Status: No_ebook

Online Access

Downloads Are Not Available:

The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.

Online Borrowing:

    Online Marketplaces

    Find Sitzungsberichte Der Heidelberger Akademie Der Wissenschaften at online marketplaces:


    2Représentations de Weil et GL2 algèbres de division et GLn

    By

    Book's cover

    “Représentations de Weil et GL2 algèbres de division et GLn” Metadata:

    • Title: ➤  Représentations de Weil et GL2 algèbres de division et GLn
    • Author:
    • Language: fre
    • Number of Pages: Median: 203
    • Publisher: ➤  Springer-Verlag - Springer London, Limited
    • Publish Date:
    • Publish Location: London - Berlin

    “Représentations de Weil et GL2 algèbres de division et GLn” Subjects and Themes:

    Edition Identifiers:

    Access and General Info:

    • First Year Published: 1987
    • Is Full Text Available: No
    • Is The Book Public: No
    • Access Status: No_ebook

    Online Marketplaces

    Find Représentations de Weil et GL2 algèbres de division et GLn at online marketplaces:


    3Etale cohomology and the Weil conjecture

    By

    Book's cover

    “Etale cohomology and the Weil conjecture” Metadata:

    • Title: ➤  Etale cohomology and the Weil conjecture
    • Author:
    • Language: English
    • Number of Pages: Median: 317
    • Publisher: Springer-Verlag
    • Publish Date:
    • Publish Location: New York - Berlin

    “Etale cohomology and the Weil conjecture” Subjects and Themes:

    Edition Identifiers:

    Access and General Info:

    • First Year Published: 1988
    • Is Full Text Available: No
    • Is The Book Public: No
    • Access Status: Unclassified

    Online Access

    Downloads Are Not Available:

    The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.

    Online Borrowing:

      Online Marketplaces

      Find Etale cohomology and the Weil conjecture at online marketplaces:


      4La conjecture de Langlands locale pour GL(3)

      By

      “La conjecture de Langlands locale pour GL(3)” Metadata:

      • Title: ➤  La conjecture de Langlands locale pour GL(3)
      • Author:
      • Language: fre
      • Number of Pages: Median: 186
      • Publisher: Gauthier-Villars
      • Publish Date:
      • Publish Location: [Montreuil] France

      “La conjecture de Langlands locale pour GL(3)” Subjects and Themes:

      Edition Identifiers:

      Access and General Info:

      • First Year Published: 1984
      • Is Full Text Available: No
      • Is The Book Public: No
      • Access Status: No_ebook

      Online Marketplaces

      Find La conjecture de Langlands locale pour GL(3) at online marketplaces:


      5Représentations du groupe de Weil d'un corps local

      By

      “Représentations du groupe de Weil d'un corps local” Metadata:

      • Title: ➤  Représentations du groupe de Weil d'un corps local
      • Author:
      • Language: fre
      • Number of Pages: Median: 126
      • Publisher: ➤  Université de Paris-Sud, Département de mathématique
      • Publish Date:
      • Publish Location: Orsay, France

      “Représentations du groupe de Weil d'un corps local” Subjects and Themes:

      Edition Identifiers:

      • The Open Library ID: OL4157765M
      • Online Computer Library Center (OCLC) ID: 7278749
      • Library of Congress Control Number (LCCN): 80138367

      Access and General Info:

      • First Year Published: 1979
      • Is Full Text Available: No
      • Is The Book Public: No
      • Access Status: No_ebook

      Online Marketplaces

      Find Représentations du groupe de Weil d'un corps local at online marketplaces:


      6The Kazhdan-Lusztig cells in certain affine Weyl groups

      By

      Book's cover

      “The Kazhdan-Lusztig cells in certain affine Weyl groups” Metadata:

      • Title: ➤  The Kazhdan-Lusztig cells in certain affine Weyl groups
      • Author:
      • Language: English
      • Number of Pages: Median: 307
      • Publisher: Springer-Verlag
      • Publish Date:
      • Publish Location: New York - Berlin

      “The Kazhdan-Lusztig cells in certain affine Weyl groups” Subjects and Themes:

      Edition Identifiers:

      Access and General Info:

      • First Year Published: 1986
      • Is Full Text Available: No
      • Is The Book Public: No
      • Access Status: No_ebook

      Online Marketplaces

      Find The Kazhdan-Lusztig cells in certain affine Weyl groups at online marketplaces:


      7Représentations de Weil et GL₂

      By

      Book's cover

      “Représentations de Weil et GL₂” Metadata:

      • Title: ➤  Représentations de Weil et GL₂
      • Author:
      • Language: fre
      • Number of Pages: Median: 203
      • Publisher: Springer-Verlag
      • Publish Date:
      • Publish Location: New York - Berlin

      “Représentations de Weil et GL₂” Subjects and Themes:

      Edition Identifiers:

      Access and General Info:

      • First Year Published: 1987
      • Is Full Text Available: No
      • Is The Book Public: No
      • Access Status: No_ebook

      Online Marketplaces

      Find Représentations de Weil et GL₂ at online marketplaces:



      Wiki

      Source: Wikipedia

      Wikipedia Results

      Search Results from Wikipedia

      Weil group

      In mathematics, a Weil group, introduced by Weil (1951), is a modification of the absolute Galois group of a local or global field, used in class field

      Mordell–Weil group

      In arithmetic geometry, the Mordell–Weil group is an abelian group associated to any abelian variety A {\displaystyle A} defined over a number field K

      Mordell–Weil theorem

      mathematics, the Mordell–Weil theorem states that for an abelian variety A {\displaystyle A} over a number field K {\displaystyle K} , the group A ( K ) {\displaystyle

      Weil–Châtelet group

      geometry, the Weil–Châtelet group or WC-group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal

      Galois representation

      ramification group. If K is a local or global field, the theory of class formations attaches to K its Weil group WK, a continuous group homomorphism φ :

      Cox–Zucker machine

      explanation needed] provides a basis (up to torsion) for the Mordell–Weil group of an elliptic surface E → S, where S is isomorphic to the projective

      André Weil

      own works as well as through the Bourbaki group, of which he was one of the principal founders. André Weil was born in Paris to agnostic Alsatian Jewish

      Local Langlands conjectures

      with homomorphisms of the Weil group to GL1(C). This gives the Langlands correspondence between homomorphisms of the Weil group to GL1(C) and irreducible

      Borel–Weil–Bott theorem

      In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be

      Class formation

      problem. This is not a Weyl group and has no connection with the Weil–Châtelet group or the Mordell–Weil group The Weil group of a class formation with