Explore: Varietes De Riemann
Discover books, insights, and more — all in one place.
Learn more about Varietes De Riemann with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “varietes-de-riemann”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Homogeneous structures on Riemannian manifolds
By F. Tricerri

“Homogeneous structures on Riemannian manifolds” Metadata:
- Title: ➤ Homogeneous structures on Riemannian manifolds
- Author: F. Tricerri
- Language: English
- Number of Pages: Median: 125
- Publisher: Cambridge University Press
- Publish Date: 1983
- Publish Location: ➤ New York - Cambridge [Cambridgeshire]
“Homogeneous structures on Riemannian manifolds” Subjects and Themes:
- Subjects: ➤ Riemannian manifolds - Lacrosse - Rules - Periodicals - Riemannscher Raum - MATHEMATICS - Differenzierbare Mannigfaltigkeit - Topology - Varietes de Riemann
Edition Identifiers:
- The Open Library ID: OL3160387M
- Online Computer Library Center (OCLC) ID: 9370863
- Library of Congress Control Number (LCCN): 83002097
- All ISBNs: 9780521274890 - 0521274893
Access and General Info:
- First Year Published: 1983
- Is Full Text Available: Yes
- Is The Book Public: No
- Access Status: Borrowable
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
- Borrowing from Open Library: Borrowing link
- Borrowing from Archive.org: Borrowing link
Online Marketplaces
Find Homogeneous structures on Riemannian manifolds at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
2An Introduction to the Analysis of Paths on a Riemannian Manifold (Mathematical Surveys & Monographs)
By Daniel W. Stroock

“An Introduction to the Analysis of Paths on a Riemannian Manifold (Mathematical Surveys & Monographs)” Metadata:
- Title: ➤ An Introduction to the Analysis of Paths on a Riemannian Manifold (Mathematical Surveys & Monographs)
- Author: Daniel W. Stroock
- Language: English
- Number of Pages: Median: 269
- Publisher: American Mathematical Society
- Publish Date: 1999 - 2005
“An Introduction to the Analysis of Paths on a Riemannian Manifold (Mathematical Surveys & Monographs)” Subjects and Themes:
- Subjects: ➤ Processos estocasticos - Riemannian manifolds - Brownian motion processes - Brownsche Bewegung - Riemannscher Raum - Varietes de Riemann - Processos de difusao - Processus de Mouvement brownien - Processos de difusão - Riemann, Variétés de
Edition Identifiers:
- The Open Library ID: OL9370534M - OL9610367M
- Online Computer Library Center (OCLC) ID: 463320824 - 42289749 - 72761905
- Library of Congress Control Number (LCCN): 99044329
- All ISBNs: 0821820206 - 0821838393 - 9780821838396 - 9780821820209
First Setence:
"In order for a mathematician to take A. Einstein's 1905 article [12] seriously, he should feel obliged to begin by doing what N. Wiener did in his 1923 article [45]."
"In order for a mathematician to take A. Einstein's 1905 article [12] seriously he should feel obliged to begin by doing what N. Wiener did in his 1923 article [45]."
Access and General Info:
- First Year Published: 1999
- Is Full Text Available: Yes
- Is The Book Public: No
- Access Status: Borrowable
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
- Borrowing from Open Library: Borrowing link
- Borrowing from Archive.org: Borrowing link
Online Marketplaces
Find An Introduction to the Analysis of Paths on a Riemannian Manifold (Mathematical Surveys & Monographs) at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
3Riemannsche Hilbert-mannigfaltigkeiten; periodische geodätische
By P. Flaschel

“Riemannsche Hilbert-mannigfaltigkeiten; periodische geodätische” Metadata:
- Title: ➤ Riemannsche Hilbert-mannigfaltigkeiten; periodische geodätische
- Author: P. Flaschel
- Language: ger
- Number of Pages: Median: 209
- Publisher: ➤ Springer-Verlag - Springer London, Limited
- Publish Date: 1972 - 2006
- Publish Location: Berlin - New York
“Riemannsche Hilbert-mannigfaltigkeiten; periodische geodätische” Subjects and Themes:
- Subjects: ➤ Global analysis (Mathematics) - Riemannian manifolds - Differentialgeometrie - Hilbert-Mannigfaltigkeit - Analyse globale (Mathematiques) - Varietes de Riemann - Analyse globale (Mathématiques) - Riemann, Variétés de - Manifolds (mathematics)
Edition Identifiers:
- The Open Library ID: OL50590806M - OL19952564M
- Online Computer Library Center (OCLC) ID: 554307
- Library of Congress Control Number (LCCN): 72088063
- All ISBNs: ➤ 9783540059684 - 9783540379614 - 9780387059686 - 0387059687 - 3540379614 - 3540059687
Access and General Info:
- First Year Published: 1972
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Riemannsche Hilbert-mannigfaltigkeiten; periodische geodätische at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
4Sobolev spaces on Riemannian manifolds
By Emmanuel Hebey

“Sobolev spaces on Riemannian manifolds” Metadata:
- Title: ➤ Sobolev spaces on Riemannian manifolds
- Author: Emmanuel Hebey
- Language: English
- Number of Pages: Median: 115
- Publisher: Springer-Verlag
- Publish Date: 1996
- Publish Location: New York - Berlin
“Sobolev spaces on Riemannian manifolds” Subjects and Themes:
- Subjects: ➤ Riemannian manifolds - Sobolev spaces - Sobolev-Raum - Sobolev ruimten - Espacos (analise funcional) - Riemannscher Raum - Varietes de Riemann - Geometria diferencial - Espaces de Sobolev - Riemann-vlakken
Edition Identifiers:
- The Open Library ID: OL997698M
- Online Computer Library Center (OCLC) ID: 503075519
- Library of Congress Control Number (LCCN): 96036418
- All ISBNs: 9783540617228 - 3540617221
Access and General Info:
- First Year Published: 1996
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Sobolev spaces on Riemannian manifolds at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Riemann hypothesis
fonctions zeta des varietés algébriques (définitions et conjectures)", Séminaire Delange-Pisot-Poitou, 19 Sheats, Jeffrey T. (1998), "The Riemann hypothesis for
Einstein–Cartan theory
relativity onto a Riemann–Cartan geometry, replacing the Einstein–Hilbert action over Riemannian geometry by the Palatini action over Riemann–Cartan geometry;
Function of several complex variables
Cartan, Henri (1957). "Variétés analytiques réelles et variétés analytiques complexes". Bulletin de la Société Mathématique de France. 85: 77–99. doi:10
History of manifolds and varieties
Bernhard Riemann. In 1857, Riemann introduced the concept of Riemann surfaces as part of a study of the process of analytic continuation; Riemann surfaces
Georges de Rham
Sur l'analysis situs des variétés à n dimensions. Thèses de l'entre-deux-guerres. Vol. 129. JFM 57.1520.06. MR 3532989. de Rham, Georges (1952). "Sur
André Weil
algébriques et les variétés qui s'en déduisent (1948) Variétés abéliennes et courbes algébriques (1948) Introduction à l'étude des variétés kählériennes (1958)
Abelian variety
known since Riemann that the algebraic variety condition imposes extra constraints on a complex torus. The following criterion by Riemann decides whether
Hyperkähler manifold
Berger, Marcel (1955). "Sur les groups d'holonomie des variétés à connexion affine et des variétés riemanniennes" (PDF). Bull. Soc. Math. France. 83: 279–330
Isospectral
2307/2322897, JSTOR 2322897 Buser, Peter (1986), "Isospectral Riemann surfaces" (PDF), Annales de l'Institut Fourier, 36 (2): 167–192, doi:10.5802/aif.1054
Manifold
named after Riemann. In his very influential paper, Analysis Situs, Henri Poincaré gave a definition of a differentiable manifold (variété) which served