Explore: Varietes A 3 Dimensions
Discover books, insights, and more — all in one place.
Learn more about Varietes A 3 Dimensions with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “varietes-a-3-dimensions”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Monomialization of Morphisms from 3 Folds to Surfaces
By Steven D. Cutkosky

“Monomialization of Morphisms from 3 Folds to Surfaces” Metadata:
- Title: ➤ Monomialization of Morphisms from 3 Folds to Surfaces
- Author: Steven D. Cutkosky
- Language: English
- Number of Pages: Median: 235
- Publisher: ➤ Springer - Springer London, Limited
- Publish Date: 2002 - 2004
“Monomialization of Morphisms from 3 Folds to Surfaces” Subjects and Themes:
- Subjects: ➤ Morphisms (Mathematics) - Threefolds (Algebraic geometry) - Algebraic Surfaces - Algebraic varieties - Morphismus - Varietes a 3 dimensions - Algebraische Varietat - Surfaces algebriques - Varietes algebriques - Algebraische oppervlakken - Morfismen (wiskunde) - Morphismes (Mathematiques) - Geometry, algebraic - Surfaces, algebraic
Edition Identifiers:
- The Open Library ID: OL36707568M - OL9057799M
- Online Computer Library Center (OCLC) ID: 51683068
- Library of Congress Control Number (LCCN): 2002070802
- All ISBNs: 9783540480303 - 3540480307 - 9783540437802 - 3540437800
Access and General Info:
- First Year Published: 2002
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: No_ebook
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Monomialization of Morphisms from 3 Folds to Surfaces at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Manifold
based on a 'chain of manifolds' (une chaîne des variétés). Poincaré's notion of a chain of manifolds is a precursor to the modern notion of atlas. In particular
Isospectral
hyperbolic 2- and 3-manifolds". Duke Mathematical Journal. 65 (2). doi:10.1215/S0012-7094-92-06508-2. Bérard, Pierre (1988–1989), Variétés riemanniennes isospectrales
Hyperkähler manifold
extérieure d'une variété presque hermitienne quaternionique". Comptes Rendus de l'Académie des Sciences. 295: 115–118. Beauville, A. (1983). "Variétés Kähleriennes
Signature (topology)
Date incompatibility (help) Thom, René. "Quelques proprietes globales des varietes differentiables" (PDF) (in French). Comm. Math. Helvetici 28 (1954), S
Cotton tensor
Oxford University Press. ISBN 978-0-19-923072-3. Cotton, É. (1899). "Sur les variétés à trois dimensions". Annales de la Faculté des Sciences de Toulouse
Noire et Blanche
current title in the French magazines Variétés and Art et Décoration in 1928. Man Ray had already published a similar photograph in the cover of the
Isoperimetric dimension
Coulhon and Laurent Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9:2 (1993), 293–314. This paper contains the
Cartan–Hadamard conjecture
1926 by André Weil and rediscovered in 1933 by Beckenbach and Rado. In dimensions 3 and 4 the conjecture was proved by Bruce Kleiner in 1992, and Chris Croke
Demazure module
MR 0782239, S2CID 121295084 Demazure, Michel (1974a), "Désingularisation des variétés de Schubert généralisées", Annales Scientifiques de l'École Normale Supérieure
Georges de Rham
Riemannian geometry. de Rham, Georges (1931). Sur l'analysis situs des variétés à n dimensions. Thèses de l'entre-deux-guerres. Vol. 129. JFM 57.1520.06. MR 3532989