Explore: Tetraeder

Discover books, insights, and more — all in one place.

Learn more about Tetraeder with top reads curated from trusted sources — all in one place.

Topic Search

Search for any topic

AI-Generated Overview About “tetraeder”:


Books Results

Source: The Open Library

The Open Library Search Results

Search results from The Open Library

1Elementare Tetraedergeometrie

By

“Elementare Tetraedergeometrie” Metadata:

  • Title: Elementare Tetraedergeometrie
  • Author:
  • Language: ger
  • Number of Pages: Median: 456
  • Publisher: Franzbecker
  • Publish Date:
  • Publish Location: Berlin - Hildesheim

“Elementare Tetraedergeometrie” Subjects and Themes:

Edition Identifiers:

Access and General Info:

  • First Year Published: 2011
  • Is Full Text Available: No
  • Is The Book Public: No
  • Access Status: No_ebook

Online Marketplaces

Find Elementare Tetraedergeometrie at online marketplaces:



Wiki

Source: Wikipedia

Wikipedia Results

Search Results from Wikipedia

Tetrahedron

In geometry, a tetrahedron (pl.: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six

Tetrahedron in Bottrop

The Tetrahedron in Bottrop (German: Bottrop Tetraeder or officially Haldenereignis Emscherblick) is a walkable steel structure in the form of a tetrahedron

Octahedron

Schönhardt, E. (1928). "Über die Zerlegung von Dreieckspolyedern in Tetraeder". Mathematische Annalen. 98: 309–312. doi:10.1007/BF01451597. Connelly

Convex combination

interactive illustration Convex sum/combination with a hexagon - interactive illustration Convex sum/combination with a tetraeder - interactive illustration

Bottrop

convention center Alpincenter - the world's longest indoor ski slope Tetraeder is a 50-m-tall walkable steel tetrahedron, placed on a 90-m slag heap

Triangular prism

Schönhardt, E. (1928). "Über die Zerlegung von Dreieckspolyedern in Tetraeder". Mathematische Annalen. 98: 309–312. doi:10.1007/BF01451597. Skilling

Heronian tetrahedron

in particular page 14 Hoppe, R. (1877), "Über rationale Dreikante und Tetraeder", Archiv der Mathematik und Physik, 61: 86–98, as cited by Chisholm &

Dissection into orthoschemes

vollständigen Zerlegung der euklidischen und nichteuklidischen Tetraeder in Orthogonal-Tetraeder", Martin-Luther-Universität Halle-Wittenberg (9): 29–54, MR 0579516

Gábor Domokos

2024. In 2025 he created with Gergö Almádi a new 3-D geometrical form, a tetraeder, monostable, always self-righting, name the bille.[clarification needed]

Tetrahedrane

Graupner, Rene; Layh, Marcus; Schütz, Uwe (1995). "In4{C(SiMe3)3}4 mit In4-tetraeder und In4Se4{C(SiMe3)3}4 mit In4Se4-heterocubanstruktur". Journal of Organometallic