Explore: Tetraeder
Discover books, insights, and more — all in one place.
Learn more about Tetraeder with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “tetraeder”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Elementare Tetraedergeometrie
By Heinz Schumann
“Elementare Tetraedergeometrie” Metadata:
- Title: Elementare Tetraedergeometrie
- Author: Heinz Schumann
- Language: ger
- Number of Pages: Median: 456
- Publisher: Franzbecker
- Publish Date: 2011
- Publish Location: Berlin - Hildesheim
“Elementare Tetraedergeometrie” Subjects and Themes:
- Subjects: Tetraeder - Stereometrie
Edition Identifiers:
- The Open Library ID: OL38579162M
- Online Computer Library Center (OCLC) ID: 734091364
- All ISBNs: 3881205209 - 9783881205207
Access and General Info:
- First Year Published: 2011
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: No_ebook
Online Marketplaces
Find Elementare Tetraedergeometrie at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Tetrahedron
In geometry, a tetrahedron (pl.: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six
Tetrahedron in Bottrop
The Tetrahedron in Bottrop (German: Bottrop Tetraeder or officially Haldenereignis Emscherblick) is a walkable steel structure in the form of a tetrahedron
Octahedron
Schönhardt, E. (1928). "Über die Zerlegung von Dreieckspolyedern in Tetraeder". Mathematische Annalen. 98: 309–312. doi:10.1007/BF01451597. Connelly
Convex combination
interactive illustration Convex sum/combination with a hexagon - interactive illustration Convex sum/combination with a tetraeder - interactive illustration
Bottrop
convention center Alpincenter - the world's longest indoor ski slope Tetraeder is a 50-m-tall walkable steel tetrahedron, placed on a 90-m slag heap
Triangular prism
Schönhardt, E. (1928). "Über die Zerlegung von Dreieckspolyedern in Tetraeder". Mathematische Annalen. 98: 309–312. doi:10.1007/BF01451597. Skilling
Heronian tetrahedron
in particular page 14 Hoppe, R. (1877), "Über rationale Dreikante und Tetraeder", Archiv der Mathematik und Physik, 61: 86–98, as cited by Chisholm &
Dissection into orthoschemes
vollständigen Zerlegung der euklidischen und nichteuklidischen Tetraeder in Orthogonal-Tetraeder", Martin-Luther-Universität Halle-Wittenberg (9): 29–54, MR 0579516
Gábor Domokos
2024. In 2025 he created with Gergö Almádi a new 3-D geometrical form, a tetraeder, monostable, always self-righting, name the bille.[clarification needed]
Tetrahedrane
Graupner, Rene; Layh, Marcus; Schütz, Uwe (1995). "In4{C(SiMe3)3}4 mit In4-tetraeder und In4Se4{C(SiMe3)3}4 mit In4Se4-heterocubanstruktur". Journal of Organometallic