Explore: Structures Hermitiennes
Discover books, insights, and more — all in one place.
Learn more about Structures Hermitiennes with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “structures-hermitiennes”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Einstein Manifolds
By A. L. Besse

“Einstein Manifolds” Metadata:
- Title: Einstein Manifolds
- Author: A. L. Besse
- Language: English
- Number of Pages: Median: 516
- Publisher: Springer-Verlag - Springer
- Publish Date: 1987 - 2008
- Publish Location: New York - Berlin
“Einstein Manifolds” Subjects and Themes:
- Subjects: ➤ Einstein manifolds - Relativity (Physics) - Riemannian Geometry - Einstein-Mannigfaltigkeit - Einstein, Variétés d' - Structures hermitiennes - Relativité (Physique) - Variétés (mathématiques) - Variétés quasi-complexes - Variétés complexes - Einstein-manifolds - STRUCTURES KAHLÉRIENNES - Riemann, Variétés de
Edition Identifiers:
- The Open Library ID: OL21785676M - OL2721897M - OL19968350M - OL18500589M
- Online Computer Library Center (OCLC) ID: 13793300
- Library of Congress Control Number (LCCN): 2007938035 - 86015411
- All ISBNs: 9780387152790 - 0387152792 - 3540741208 - 9783540741206
Access and General Info:
- First Year Published: 1987
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: No_ebook
Online Marketplaces
Find Einstein Manifolds at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
2Hermitian and Kählerian geometry in relativity
By Edward J. Flaherty

“Hermitian and Kählerian geometry in relativity” Metadata:
- Title: ➤ Hermitian and Kählerian geometry in relativity
- Author: Edward J. Flaherty
- Language: English
- Number of Pages: Median: 365
- Publisher: Springer-Verlag
- Publish Date: 1976
- Publish Location: Berlin - New York
“Hermitian and Kählerian geometry in relativity” Subjects and Themes:
- Subjects: ➤ Complex manifolds - Hermitian structures - Kählerian structures - Relativity (Physics) - Structures kählériennes - Mannigfaltigkeit - Variétés complexes - Relativitätstheorie - Structures hermitiennes - Relativité (Physique) - Differentiaalmeetkunde - Relativiteitstheorie
Edition Identifiers:
- The Open Library ID: OL5213744M
- Online Computer Library Center (OCLC) ID: 1974193
- Library of Congress Control Number (LCCN): 75043532
- All ISBNs: 9780387075402 - 0387075402
Access and General Info:
- First Year Published: 1976
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Hermitian and Kählerian geometry in relativity at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Hyperkähler manifold
choose complex structures Ix, Jx and Kx on TxM which make TxM into a quaternionic vector space. Parallel transport of these complex structures gives the required
Quaternionic manifold
for quaternions. The most succinct definition uses the language of G-structures on a manifold. Specifically, a quaternionic n-manifold can be defined
Edmond Bonan
pp. 1696–1699. Structures presque hermitiennes quaternioniennes, vol. 258, 1964, pp. 1988–1991. Tenseur de structure d'une variété presque quaternionienne
Quaternion-Kähler manifold
Bonan, Edmond (1982). "Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique". Comptes Rendus de l'Académie des Sciences. 295: 115–118
Calibrated geometry
Bonan, Edmond (1982), "Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique", C. R. Acad. Sci. Paris, 295: 115–118. Berger, M. (1970)
Séminaire Nicolas Bourbaki (1950–1959)
variety) François Bruhat, Structure des algèbres de Lie semi-simples (Semisimple Lie algebras) Jean-Louis Koszul, Formes hermitiennes canoniques des espaces