Explore: Structures Hermitiennes

Discover books, insights, and more — all in one place.

Learn more about Structures Hermitiennes with top reads curated from trusted sources — all in one place.

Topic Search

Search for any topic

AI-Generated Overview About “structures-hermitiennes”:


Books Results

Source: The Open Library

The Open Library Search Results

Search results from The Open Library

1Einstein Manifolds

By

Book's cover

“Einstein Manifolds” Metadata:

  • Title: Einstein Manifolds
  • Author:
  • Language: English
  • Number of Pages: Median: 516
  • Publisher: Springer-Verlag - Springer
  • Publish Date:
  • Publish Location: New York - Berlin

“Einstein Manifolds” Subjects and Themes:

Edition Identifiers:

Access and General Info:

  • First Year Published: 1987
  • Is Full Text Available: No
  • Is The Book Public: No
  • Access Status: No_ebook

Online Marketplaces

Find Einstein Manifolds at online marketplaces:


2Hermitian and Kählerian geometry in relativity

By

Book's cover

“Hermitian and Kählerian geometry in relativity” Metadata:

  • Title: ➤  Hermitian and Kählerian geometry in relativity
  • Author:
  • Language: English
  • Number of Pages: Median: 365
  • Publisher: Springer-Verlag
  • Publish Date:
  • Publish Location: Berlin - New York

“Hermitian and Kählerian geometry in relativity” Subjects and Themes:

Edition Identifiers:

Access and General Info:

  • First Year Published: 1976
  • Is Full Text Available: No
  • Is The Book Public: No
  • Access Status: Unclassified

Online Access

Downloads Are Not Available:

The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.

Online Borrowing:

    Online Marketplaces

    Find Hermitian and Kählerian geometry in relativity at online marketplaces:



    Wiki

    Source: Wikipedia

    Wikipedia Results

    Search Results from Wikipedia

    Hyperkähler manifold

    choose complex structures Ix, Jx and Kx on TxM which make TxM into a quaternionic vector space. Parallel transport of these complex structures gives the required

    Quaternionic manifold

    for quaternions. The most succinct definition uses the language of G-structures on a manifold. Specifically, a quaternionic n-manifold can be defined

    Edmond Bonan

    pp. 1696–1699. Structures presque hermitiennes quaternioniennes, vol. 258, 1964, pp. 1988–1991. Tenseur de structure d'une variété presque quaternionienne

    Quaternion-Kähler manifold

    Bonan, Edmond (1982). "Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique". Comptes Rendus de l'Académie des Sciences. 295: 115–118

    Calibrated geometry

    Bonan, Edmond (1982), "Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique", C. R. Acad. Sci. Paris, 295: 115–118. Berger, M. (1970)

    Séminaire Nicolas Bourbaki (1950–1959)

    variety) François Bruhat, Structure des algèbres de Lie semi-simples (Semisimple Lie algebras) Jean-Louis Koszul, Formes hermitiennes canoniques des espaces