Explore: Problème De Neumann
Discover books, insights, and more — all in one place.
Learn more about Problème De Neumann with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “probl%C3%A8me-de-neumann”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1UHLENBECK COMPACTNESS
By KATRIN WEHRHEIM
“UHLENBECK COMPACTNESS” Metadata:
- Title: UHLENBECK COMPACTNESS
- Author: KATRIN WEHRHEIM
- Language: English
- Publisher: EUROPEAN MATHEMATICAL SOC.
- Publish Location: ➤ [Place of publication not identified]
“UHLENBECK COMPACTNESS” Subjects and Themes:
- Subjects: ➤ Compact groups - Riemannian manifolds - Gauge fields (Physics) - Yang-Mills theory - Neumann problem - Groupes compacts - Variétés de Riemann - Champs de jauge (Physique) - Théorie de Yang-Mills - Problème de Neumann - MATHEMATICS / Algebra / Intermediate
Edition Identifiers:
- The Open Library ID: OL43892152M
- Online Computer Library Center (OCLC) ID: 964333572
- All ISBNs: 9783037195048 - 3037195045
Access and General Info:
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: No_ebook
Online Marketplaces
Find UHLENBECK COMPACTNESS at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
2Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem
By Emil J. Straube

“Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem” Metadata:
- Title: ➤ Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem
- Author: Emil J. Straube
- Language: English
- Number of Pages: Median: 206
- Publisher: European Mathematical Society
- Publish Date: 2010
- Publish Location: Zürich
“Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem” Subjects and Themes:
- Subjects: ➤ Functions of several complex variables - Partial differential operators - Neumann problem - Sobolev spaces - Opérateurs différentiels partiels - Fonctions de plusieurs variables complexes - Espaces de Sobolev - Problème de Neumann - Sobolev-Raum - Pseudokonvexes Gebiet - Regulärer Operator - Partial Differential equations
Edition Identifiers:
- The Open Library ID: OL25564755M
- Online Computer Library Center (OCLC) ID: 630491214 - 656239043
- Library of Congress Control Number (LCCN): 2012517981
- All ISBNs: 3037190760 - 9783037190760
Access and General Info:
- First Year Published: 2010
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: No_ebook
Online Marketplaces
Find Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Von Neumann–Bernays–Gödel set theory
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice
Von Neumann universe
In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary
Neumann–Poincaré operator
Potentialtheoretische Untersuchungen, Teubner Poincaré, H. (1897), "La méthode de Neumann et le problème de Dirichlet", Acta Math., 20: 59–152, doi:10.1007/bf02418028 Saranen
Franz Neumann (political scientist)
Franz Leopold Neumann (23 May 1900 – 2 September 1954) was a German political activist, Western Marxist theorist and labor lawyer, who became a political
Mixed boundary condition
Zaremba, S. (1910), "Sur un problème mixte relatif à l' équation de Laplace", Bulletin international de l'Académie des Sciences de Cracovie. Classe des Sciences
Axiom of regularity
infinite membership chains. The axiom was originally formulated by von Neumann; it was adopted in a formulation closer to the one found in contemporary
David Catlin
La sous-ellipticité pour le problème ∂ ¯ {\displaystyle {\overline {\partial }}} -Neumann dans un domaine pseudoconvexe de C n {\displaystyle \mathrm {\mathbf
De Broglie–Bohm theory
de Beauregard in the 1950s and is also used by John Cramer in his transactional interpretation except the beables that exist between the von Neumann strong
John Forbes Nash Jr.
John (1962). "Le problème de Cauchy pour les équations différentielles d'un fluide général". Bulletin de la Société Mathématique de France. 90: 487–497
Suslin's problem
Comment. Math. Univ. Carolinae, 8: 291–305, MR 0215729 Souslin, M. (1920), "Problème 3" (PDF), Fundamenta Mathematicae, 1: 223, doi:10.4064/fm-1-1-223-224 Solovay