Explore: Modules De Banach
Discover books, insights, and more — all in one place.
Learn more about Modules De Banach with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “modules-de-banach”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Bidualräume und Vervollständigungen von Banachmoduln
By Michael Grosser

“Bidualräume und Vervollständigungen von Banachmoduln” Metadata:
- Title: ➤ Bidualräume und Vervollständigungen von Banachmoduln
- Author: Michael Grosser
- Language: ger
- Number of Pages: Median: 209
- Publisher: Springer
- Publish Date: 1979
- Publish Location: Berlin - New York
“Bidualräume und Vervollständigungen von Banachmoduln” Subjects and Themes:
- Subjects: ➤ Banach modules (Algebra) - Banach spaces - Banach algebras - Modules de Banach - Espaces de Banach - Banach-Modul - Bidualraum - Vervollständigung - Banach-Algebra - Banach-Raum - Lokalkonvexer Raum - Multiplikatoralgebra - Banach-algebra's
Edition Identifiers:
- The Open Library ID: OL4193989M
- Online Computer Library Center (OCLC) ID: 5330791
- Library of Congress Control Number (LCCN): 80472703
- All ISBNs: 9780387092577 - 0387092579
Access and General Info:
- First Year Published: 1979
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Bidualräume und Vervollständigungen von Banachmoduln at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
2Scientific ballooning
By N. Yajima

“Scientific ballooning” Metadata:
- Title: Scientific ballooning
- Author: N. Yajima
- Language: English
- Number of Pages: Median: 213
- Publisher: Springer-Verlag - Springer
- Publish Date: 2009
- Publish Location: New York
“Scientific ballooning” Subjects and Themes:
- Subjects: ➤ Balloons in astronomy - Scientific applications - Balloons - Approximate identities (Algebra) - Factorization (Mathematics) - Banach modules (Algebra) - Congresses - Coherence (Optics) - Image processing - Coherence (Nuclear physics) - Banach algebras - Balloons, scientific applications - Cohérence (optique) - Congrès - Cohérence (physique nucléaire) - Traitement d'images - Bildanalyse - Elektronenoptik - Holographie - Kohärenz - Kongress - Neutronenoptik - Optische Abbildung - Röntgenoptik - Algèbres de Banach - Modules de Banach - Identités approximatives (Algèbre) - Factorisation - Approximation - Banach-Modul - Banach-Raum - Faktorisierung - Identität - Modul - Banachruimten - Factorisatie - Functional analysis - Topological groups - Geography - Meteorology - Planetology - Astronautics - Earth Sciences - Meteorology/Climatology - Observations and Techniques Astronomy - Aerospace Technology and Astronautics
Edition Identifiers:
- The Open Library ID: OL24486989M
- Online Computer Library Center (OCLC) ID: 280465209 - 5894204 - 5831113
- Library of Congress Control Number (LCCN): 79027215 - 79027544 - 2008944012
- All ISBNs: 9780387097251 - 9780387097275 - 0387097279 - 0387097252
Access and General Info:
- First Year Published: 2009
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: No_ebook
Online Marketplaces
Find Scientific ballooning at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Hahn–Banach theorem
In functional analysis, the Hahn–Banach theorem is a central result that allows the extension of bounded linear functionals defined on a vector subspace
Open mapping theorem (functional analysis)
open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental
Complemented subspace
finite-dimensional vector spaces. Every finite-dimensional subspace of a Banach space is complemented, but other subspaces may not. In general, classifying
Von Neumann algebra
III: The M-dimension can be 0 or ∞. Any two non-zero modules are isomorphic, and all non-zero modules are standard. Connes (1976) and others proved that
Hilbert C*-module
a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras. Hilbert C*-modules are crucial to Kasparov's formulation
Basis (linear algebra)
every module has a basis. A module that has a basis is called a free module. Free modules play a fundamental role in module theory, as they may be used
Seminorm
nonnegative. Sublinear functions are often encountered in the context of the Hahn–Banach theorem. A real-valued function p : X → R {\displaystyle p:X\to \mathbb
Fréchet space
generalizations of Banach spaces (normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces
Vector space
one-forms. Modules are to rings what vector spaces are to fields: the same axioms, applied to a ring R instead of a field F, yield modules. The theory
Locally convex topological vector space
of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear