Explore: Géométrie Non Euclidienne

Discover books, insights, and more — all in one place.

Learn more about Géométrie Non Euclidienne with top reads curated from trusted sources — all in one place.

Topic Search

Search for any topic

AI-Generated Overview About “g%C3%A9om%C3%A9trie-non-euclidienne”:


Books Results

Source: The Open Library

The Open Library Search Results

Search results from The Open Library

1¦uvres mathématiques

By

Book's cover

“¦uvres mathématiques” Metadata:

  • Title: ¦uvres mathématiques
  • Author:
  • Language: fre
  • Number of Pages: Median: 450
  • Publisher: Jacques Gabay
  • Publish Date:

“¦uvres mathématiques” Subjects and Themes:

Edition Identifiers:

Access and General Info:

  • First Year Published: 1992
  • Is Full Text Available: No
  • Is The Book Public: No
  • Access Status: Unclassified

Online Access

Downloads Are Not Available:

The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.

Online Borrowing:

    Online Marketplaces

    Find ¦uvres mathématiques at online marketplaces:



    Wiki

    Source: Wikipedia

    Wikipedia Results

    Search Results from Wikipedia

    Hyperboloid model

    (pages 271,2) Poincaré, H. (1881). "Sur les applications de la géométrie non-euclidienne à la théorie des formes quadratiques" (PDF). Association Française

    Paul Jean Joseph Barbarin

    de géométrie analytique non euclidienne. Bruxelles. 1900.{{cite book}}: CS1 maint: location missing publisher (link) Géométrie infinitésimal non euclidienne

    Henri Poincaré

    translation Poincaré, H. (1881). "Sur les applications de la géométrie non-euclidienne à la théorie des formes quadratiques" (PDF). Association Française

    Lexell's theorem

    triangle et polygone" [Plane areas, triangle and polygon], La géométrie non Euclidienne [Non-Euclidean Geometry] (in French), Scientia, § 6.23, pp. 50–55

    Andries Mac Leod

    (Henschen-Dahlquist 1966). Mac Leod, A. (1922), Introduction à la géometrie non-euclidienne, Paris: J. Hermann, p. 433, JFM 48.0633.03 Mac Leod, A. (1923)

    Line (geometry)

    Padoa, Alessandro (1900), Un nouveau système de définitions pour la géométrie euclidienne (in French), International Congress of Mathematicians Russell, Bertrand

    Imre Tóth (philosopher)

    révolution non euclidienne, in La recherche en histoire des Sciences, Paris, 1983 Three Errors in Frege's “Grundlagen” of 1884: Frege and Non-Euclidean

    Stéphane de Gérando

    Astronomique de Strasbourg), Paris, 3icar /icarEditions, 2015, 17 p. Géométrie Euclidienne et création artistique sonore et visuelle, avec Athanase Papadopoulos