Explore: Fonctions Theta
Discover books, insights, and more — all in one place.
Learn more about Fonctions Theta with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “fonctions-theta”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Elements of the representation theory of the Jacobi group
By Rolf Berndt

“Elements of the representation theory of the Jacobi group” Metadata:
- Title: ➤ Elements of the representation theory of the Jacobi group
- Author: Rolf Berndt
- Language: English
- Number of Pages: Median: 213
- Publisher: Birkhäuser Verlag
- Publish Date: 1998
- Publish Location: Boston
“Elements of the representation theory of the Jacobi group” Subjects and Themes:
- Subjects: ➤ Discontinuous groups - Functions, Theta - Representations of groups - Theta Functions - Fonctions theta - Representations de groupes - Groupes discontinus - Fonctions thêta - Représentations de groupes
Edition Identifiers:
- The Open Library ID: OL358165M
- Online Computer Library Center (OCLC) ID: 39630272 - 38910274
- Library of Congress Control Number (LCCN): 98018101
- All ISBNs: 9780817659226 - 0817659226
Access and General Info:
- First Year Published: 1998
- Is Full Text Available: Yes
- Is The Book Public: No
- Access Status: Printdisabled
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Elements of the representation theory of the Jacobi group at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Riemann–Siegel theta function
Riemann–Siegel theta function is defined in terms of the gamma function as θ ( t ) = arg ( Γ ( 1 4 + i t 2 ) ) − log π 2 t {\displaystyle \theta (t)=\arg
Jacobi elliptic functions
de la théorie des fonctions elliptiques et applications (Paris, Gauthier Villars, 1897) (in French) G. H. Halphen Traité des fonctions elliptiques et de
Mock modular form
weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described
Eugen Jahnke
ISBN 978-3956108617. "Nouveaux systèmes orthogonaux dérivées des fonctions thêta de deux arguments". Compte rendu du deuxième Congrès International
Casorati–Weierstrass theorem
Briot, Ch; Bouquet, C (1859). Theorie des fonctions doublement periodiques, et en particulier, des fonctions elliptiques. Paris.{{cite book}}: CS1 maint:
Charles Jean de la Vallée Poussin
{\displaystyle F} such that F ( θ ) = f ( cos θ ) . {\displaystyle F(\theta )=f(\cos \theta ).\,} Finally, the de la Vallée Poussin sums can be evaluated in
Copula (statistics)
Paul; Goursat, Edouard (1895). Théorie des fonctions algébriques et de leurs intégrales étude des fonctions analytiques sur une surface de Riemann / par
Séminaire Nicolas Bourbaki
Théorèmes fondamentaux de la théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions) André Blanchard, Groupes algébriques
Theta characteristic
In mathematics, a theta characteristic of a non-singular algebraic curve C is a divisor class Θ such that 2Θ is the canonical class. In terms of holomorphic
Legendre polynomials
\theta )&=1&&=P_{0}(\cos \theta ),\\[4pt]T_{1}(\cos \theta )&=\cos \theta &&=P_{1}(\cos \theta ),\\[4pt]T_{2}(\cos \theta )&=\cos 2\theta &&={\tfrac