Explore: Fonction Gamma
Discover books, insights, and more — all in one place.
Learn more about Fonction Gamma with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “fonction-gamma”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1Special functions
By George E. Andrews

“Special functions” Metadata:
- Title: Special functions
- Author: George E. Andrews
- Language: English
- Number of Pages: Median: 664
- Publisher: Cambridge University Press
- Publish Date: 1999
- Publish Location: ➤ New York, NY, USA - Cambridge, UK
“Special functions” Subjects and Themes:
- Subjects: ➤ Functions, Special - Special Functions - Hypergeometric functions - Hypergeometric series - Harmonique sphérique - Polynôme orthogonal - Fonction Gamma - Speciale functies (wiskunde) - Fonction Bessel - Fonksiyonlar, Özel - Fonctions spéciales - Fonction hypergéométrique - Fonction spéciale - Mathematics, problems, exercises, etc.
Edition Identifiers:
- The Open Library ID: OL365429M
- Online Computer Library Center (OCLC) ID: 39189987
- Library of Congress Control Number (LCCN): 98025757
- All ISBNs: 0521623219 - 9780521623216
Author's Alternative Names:
"George Eyre Andrews"Access and General Info:
- First Year Published: 1999
- Is Full Text Available: No
- Is The Book Public: No
- Access Status: Unclassified
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
Online Marketplaces
Find Special functions at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
Euler's constant
{\displaystyle {\begin{aligned}&\gamma (0,q)={\frac {\gamma -\log q}{q}},\\&\sum _{a=0}^{q-1}\gamma (a,q)=\gamma ,\\&q\gamma (a,q)=\gamma -\sum _{j=1}^{q-1}e^{-{\frac
Hadamard's gamma function
zeta function. Gamma function Pseudogamma function Hadamard, M. J. (1894), Sur L'Expression Du Produit 1·2·3· · · · ·(n−1) Par Une Fonction Entière (PDF)
Holomorphic function
Jean-Claude (1875). "§15 fonctions holomorphes". Théorie des fonctions elliptiques (2nd ed.). Gauthier-Villars. pp. 14–15. Lorsqu'une fonction est continue, monotrope
Éléments de mathématique
Nicolas (1976). Fonctions d'une variable réelle. Éléments de mathématique. Springer. ISBN 9783540340362. French paperback edition. Fonctions d'une variable
Barnes G-function
extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named
Riemann zeta function
doi:10.1016/j.jnt.2013.07.017. Hardy, G.H. (1914). "Sur les zeros de la fonction ζ(s)". Comptes rendus de l'Académie des Sciences. 158. French Academy of
27 (number)
S2CID 239885788. Zbl 1532.11010. Robin, Guy (1984). "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann" (PDF). Journal de Mathématiques
Factorial
(1968) [1894]. "Sur l'expression du produit 1·2·3· · · · ·(n−1) par une fonction entière" (PDF). Œuvres de Jacques Hadamard (in French). Paris: Centre National
Mittag-Leffler function
}(z)=\sum _{k=0}^{\infty }{\frac {z^{k}}{\Gamma (\alpha k+1)}},} where Γ ( x ) {\displaystyle \Gamma (x)} is the gamma function, and α {\displaystyle \alpha
Ernst Leonard Lindelöf
résidus et ses applications à la théorie des fonctions (Paris, 1905) Mémoire sur la théorie des fonctions entières d'ordre fini ("Acta societatis scientiarum