Explore: Find Cos
Discover books, insights, and more — all in one place.
Learn more about Find Cos with top reads curated from trusted sources — all in one place.
AI-Generated Overview About “find-cos”:
Books Results
Source: The Open Library
The Open Library Search Results
Search results from The Open Library
1An Elementary Treatise on Plane Trigonometry
By Ernest William Hobson and C.M. (Charles Minshall) Jessop

“An Elementary Treatise on Plane Trigonometry” Metadata:
- Title: ➤ An Elementary Treatise on Plane Trigonometry
- Authors: Ernest William Hobson C.M. (Charles Minshall) Jessop
- Number of Pages: Median: 327
- Publisher: University press
- Publish Date: 1892
“An Elementary Treatise on Plane Trigonometry” Subjects and Themes:
- Subjects: ➤ sin - cos - tan - angle - log - angles - cot - prove - triangle - trigonometrical - trigonometrical ratios - circular measure - angle subtended - find sin - trigonometrical ratio - triangle abc - horizontal plane - middle point - inscribed circle - find cos
Edition Identifiers:
- The Open Library ID: OL20470312M
- Online Computer Library Center (OCLC) ID: 1477037
Access and General Info:
- First Year Published: 1892
- Is Full Text Available: Yes
- Is The Book Public: Yes
- Access Status: Public
Online Access
Online Borrowing:
- Borrowing from Open Library: Borrowing link
- Borrowing from Archive.org: Borrowing link
Online Marketplaces
Find An Elementary Treatise on Plane Trigonometry at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Wiki
Source: Wikipedia
Wikipedia Results
Search Results from Wikipedia
List of trigonometric identities
sin α cos β cos γ cos ( 2 α ) + cos ( 2 β ) + cos ( 2 γ ) = − 4 cos α cos β cos γ − 1 − cos ( 2 α ) + cos ( 2 β ) + cos ( 2 γ
Trigonometric functions
formula cos ( x − y ) = cos x cos y + sin x sin y {\displaystyle \cos(x-y)=\cos x\cos y+\sin x\sin y\,} and the added condition 0 < x cos x <
Law of cosines
hold: cos a = cos b cos c + sin b sin c cos A cos A = − cos B cos C + sin B sin C cos a cos a = cos A + cos B cos C sin
Fresnel equations
n 1 cos θ i − n 2 cos θ t n 1 cos θ i + n 2 cos θ t , t s = 2 n 1 cos θ i n 1 cos θ i + n 2 cos θ t , r p = n 2 cos θ i − n 1 cos θ
Rotation matrix
the matrix R = [ cos θ − sin θ sin θ cos θ ] {\displaystyle R={\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{bmatrix}}}
Sine and cosine
are denoted as sin ( θ ) {\displaystyle \sin(\theta )} and cos ( θ ) {\displaystyle \cos(\theta )} . The definitions of sine and cosine have been extended
Euler's formula
x = cos x + i sin x , {\displaystyle e^{ix}=\cos x+i\sin x,} where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin
De Moivre's formula
it is the case that ( cos x + i sin x ) n = cos n x + i sin n x , {\displaystyle {\big (}\cos x+i\sin x{\big )}^{n}=\cos nx+i\sin nx,} where i
Polar coordinate system
{\partial }{\partial r}}+{\frac {1}{r}}\cos \varphi {\frac {\partial }{\partial \varphi }}.\end{aligned}}} To find the Cartesian slope of the tangent line
Maple (software)
:= n -> product(i, i = 1..n); Find ∫ cos ( x a ) d x {\displaystyle \int \cos \left({\frac {x}{a}}\right)dx} . int(cos(x/a), x); Output: a sin ( x