Weighted approximation with varying weight - Info and Reading Options
By V. Totik

"Weighted approximation with varying weight" was published by Springer-Verlag in 1994 - Berlin, it has 114 pages and the language of the book is English.
“Weighted approximation with varying weight” Metadata:
- Title: ➤ Weighted approximation with varying weight
- Author: V. Totik
- Language: English
- Number of Pages: 114
- Publisher: Springer-Verlag
- Publish Date: 1994
- Publish Location: Berlin
“Weighted approximation with varying weight” Subjects and Themes:
- Subjects: ➤ Approximation theory - Polynomials - Polynomes - Approximation, Theorie de l' - Benaderingen (wiskunde) - Approximationstheorie - Gewichtete Polynomapproximation - Approximacio-elmelet (matematika) - Polynomen - Mathematics - Potential theory (Mathematics) - Real Functions - Potential Theory
Edition Specifications:
- Pagination: vi, 114 p. :
Edition Identifiers:
- The Open Library ID: OL1436919M - OL3961435W
- Online Computer Library Center (OCLC) ID: 29598247
- Library of Congress Control Number (LCCN): 93049416
- ISBN-10: 354057705X - 038757705X
- All ISBNs: 354057705X - 038757705X
AI-generated Review of “Weighted approximation with varying weight”:
"Weighted approximation with varying weight" Description:
The Open Library:
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Read “Weighted approximation with varying weight”:
Read “Weighted approximation with varying weight” by choosing from the options below.
Search for “Weighted approximation with varying weight” downloads:
Visit our Downloads Search page to see if downloads are available.
Borrow "Weighted approximation with varying weight" Online:
Check on the availability of online borrowing. Please note that online borrowing has copyright-based limitations and that the quality of ebooks may vary.
- Is Online Borrowing Available: Yes
- Preview Status: full
- Check if available: The Open Library & The Internet Archive
Find “Weighted approximation with varying weight” in Libraries Near You:
Read or borrow “Weighted approximation with varying weight” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Weighted approximation with varying weight” at a library near you.
Buy “Weighted approximation with varying weight” online:
Shop for “Weighted approximation with varying weight” on popular online marketplaces.
- Ebay: New and used books.