"Tutorials in complex photonic media" - Information and Links:

Tutorials in complex photonic media - Info and Reading Options

"Tutorials in complex photonic media" was published by SPIE Press in 2009 - Bellingham, Wash, it has 696 pages and the language of the book is English.


“Tutorials in complex photonic media” Metadata:

  • Title: ➤  Tutorials in complex photonic media
  • Author:
  • Language: English
  • Number of Pages: 696
  • Publisher: SPIE Press
  • Publish Date:
  • Publish Location: Bellingham, Wash

“Tutorials in complex photonic media” Subjects and Themes:

Edition Specifications:

  • Pagination: ➤  xxv, 696 p., [6] p. of plates :

Edition Identifiers:

AI-generated Review of “Tutorials in complex photonic media”:


"Tutorials in complex photonic media" Table Of Contents:

  • 1- Foreword
  • 2- Preface
  • 3- List of contributors
  • 4- List of abbreviations
  • 5- 1. Negative refraction / Martin W. McCall and Graeme Dewar. 1.1. Introduction
  • 6- 1.2. Background
  • 7- 1.3. Beyond natural media: waves that run backward
  • 8- 1.4. Wires and rings
  • 9- 1.5. Experimental confirmation
  • 10- 1.6. The "perfect" lens
  • 11- 1.7. The formal criterion for achieving negative phase velocity propagation
  • 12- 1.8. Fermat's principle and negative space
  • 13- 1.9. Cloaking
  • 14- 1.10. Conclusion
  • 15- Appendix I. The e([omega]) of a square wire array
  • 16- Appendix II. Physics of the wire array's plasma frequency and damping rate
  • 17- References
  • 18- 2. Optical hyperspace: negative refractive index and subwavelength imaging / Leonid V. Alekseyev, Zubin Jacob, and Evgenii Narimanov. 2.1. Introduction
  • 19- 2.2. Nonmagnetic negative refraction
  • 20- 2.3. Hyperbolic dispersion: materials
  • 21- 2.4. Applications
  • 22- 2.5. Conclusion
  • 23- References.
  • 24- 3. Magneto-optics and the Kerr effect with ferromagnetic materials / Allan D. Boardman and Neil King. 3.1. Introduction to magneto-optical materials and concepts
  • 25- 3.2. Reflection of light from a plane ferromagnetic surface
  • 26- 3.3. Enhancing the Kerr effect with attenuated total reflection
  • 27- 3.4. Numerical investigations of attenuated total reflection
  • 28- 3.5. Conclusions
  • 29- References
  • 30- 4. Symmetry properties of nonlinear magneto-optical effects / Yutaka Kawabe. 4.1. Introduction
  • 31- 4.2. Nonlinear optics in magnetic materials
  • 32- 4.3. Magnetic-field-induced second-harmonic generation
  • 33- 4.4. Effects due to an optical magnetic field or magnetic dipole moment transition
  • 34- 4.5. Experiments
  • 35- References
  • 36- 5. Optical magnetism in plasmonic metamaterials / Gennady Shvets and Yaroslav A. Urzhumov. 5.1. Introduction
  • 37- 5.2. Why is optical magnetism difficult to achieve?
  • 38- 5.3. Effective quasistatic dielectric permittivity of a plasmonic metamaterial
  • 39- 5.4. Summary
  • 40- 5.5. Appendix. Electromagnetic red shifts of plasmonic resonances
  • 41- References.
  • 42- 6. Chiral photonic media / Ian Hodgkinson and Levi Bourke. 6.1. Introduction
  • 43- 6.2. Stratified anisotropic media
  • 44- 6.3. Chiral architectures and characteristic matrices
  • 45- 6.4. Reflectance spectra and polarization response maps
  • 46- 6.5. Summary
  • 47- References
  • 48- 7. Optical vortices / Kevin O'Holleran, Mark R. Dennis, and Miles J. Padgett. 7.1. Introduction
  • 49- 7.2. Locating vortex lines
  • 50- 7.3. Making beams containing optical vortices
  • 51- 7.4. Topology of vortex lines
  • 52- 7.5. Computer simulation of vortex structures
  • 53- 7.6. Vortex structures in random fields
  • 54- 7.7. Experiments for visualizing vortex structures
  • 55- 7.8. Conclusions
  • 56- References
  • 57- 8. Photonic crystals: from fundamentals to functional photonic opals / Durga P. Aryal, Kosmas L. Tsakmakidis, and Ortwin Hess. 8.1. Introduction
  • 58- 8.2. Principles of photonic crystals
  • 59- 8.3. One-dimensional photonic crystals
  • 60- 8.4. Generalization to two- and three-dimensional photonic crystals
  • 61- 8.5. Physics of Inverse-Opal Photonic Crystals
  • 62- 8.6. Double-Inverse-Opal Photonic Crystals (DIOPCs)
  • 63- 8.7. Conclusion
  • 64- 8.8. Appendix: Plane Wave Expansion (PWE) method
  • 65- References
  • 66- 9. Wave interference and modes in random media / Azriel Z. Genack and Sheng Zhang. 9.1. Introduction
  • 67- 9.2. Wave interference
  • 68- 9.3. Modes
  • 69- 9.4. Conclusions
  • 70- References
  • 71- 10. Chaotic behavior of random lasers / Diederik S. Wiersma, Sushil Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo, Stefano Lepri. 10.1. Introduction
  • 72- 10.2. Experiments on emission spectra
  • 73- 10.3. Experiments on speckle patterns
  • 74- 10.4. Modeling
  • 75- 10.5. Lévy statistics in random laser emission
  • 76- 10.6. Discussion
  • 77- References.
  • 78- 11. Lasing in random media / Hui Cao. 11.1. Introduction
  • 79- 11.2. Random lasers with incoherent feedback
  • 80- 11.3. Random lasers with coherent feedback
  • 81- 11.4. Potential applications of random lasers
  • 82- References. Color plate section. 12. Feedback in random lasers / Mikhail A. Noginov. 12.1. Introduction
  • 83- 12.2. The concept of a laser
  • 84- 12.3. Lasers with nonresonant feedback and random lasers
  • 85- 12.4. Photon migration and localization in scattering media and their applications to random lasers
  • 86- 12.5. Neodymium random lasers with nonresonant feedback
  • 87- 12.6. ZnO random lasers with resonant feedback
  • 88- 12.7. Stimulated emission feedback: from nonresonant to resonant and back to nonresonant
  • 89- 12.8. Summary of various random laser operation regimes
  • 90- References
  • 91- 13. Optical metamaterials with zero loss and plasmonic nanolasers / Andrey K. Sarychev. 13.1. Introduction
  • 92- 13.2. Magnetic plasmon resonance
  • 93- 13.3. Electrodynamics of a nanowire resonator
  • 94- 13.4. Capacitance and inductance of two parallel wires
  • 95- 13.5. Lumped model of a resonator filled with an active medium
  • 96- 13.6. Interaction of nanontennas with an active host medium
  • 97- 13.7. Plasmonic nanolasers and optical magnetism
  • 98- 13.8. Conclusions
  • 99- References.
  • 100- 14. Resonance energy transfer: theoretical foundations and developing applications / David L. Andrews. 14.1. Introduction
  • 101- 14.2. Electromagnetic origins
  • 102- 14.3. Features of the pair transfer rate
  • 103- 14.4. Energy transfer in heterogeneous solids
  • 104- 14.5. Directed energy transfer
  • 105- 14.6. Developing applications
  • 106- 14.7. Conclusion
  • 107- References
  • 108- 15. Optics of nanostructured materials from first principles / Vladimir I. Gavrilenko. 15.1. Introduction
  • 109- 15.2. Optical response from first principles
  • 110- 15.3. Effect of the local field in optics
  • 111- 15.4. Electrons in quantum confined systems
  • 112- 15.5. Cavity quantum electrodynamics
  • 113- 15.6. Optical Raman spectroscopy of nanostructures
  • 114- 15.7. Concluding remarks
  • 115- Appendix I. Electron energy structure and standard density functional theory
  • 116- Appendix II. Optical functions within perturbation theory
  • 117- Appendix III. Evaluation of the polarization function including the local field effect
  • 118- Appendix IV. Optical field Hamiltonian in second quantization representation
  • 119- References.
  • 120- 16 Organic photonic materials / Larry R. Dalton, Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbrict, Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. 16.1 Preface
  • 121- 16.2 Introduction
  • 122- 16.3 Effects of dielectric permittivity and dispersion
  • 123- 16.4 Complex dendrimer materials: effects of covalent bonds
  • 124- 16.5 Binary Chromophore Organic Glasses (BCOGs)
  • 125- 16.6 Thermal and photochemical stability: lattice hardening
  • 126- 16.7 Thermal and photochemical stability: measurement
  • 127- 16.8 Devices and applications
  • 128- 16.9 Summary and conclusions
  • 129- 16.10. Appendix. Linear and nonlinear polarization
  • 130- References.
  • 131- 17. Charge transport and optical effects in disordered organic semiconductors / Harry H. L. Kwok, You-Lin Wu, and Tai-Ping Sun. 17.1. Introduction
  • 132- 17.2. Charge transport
  • 133- 17.3. Impedance spectroscopy: bias and temperature dependence
  • 134- 17.4. Transient spectroscopy
  • 135- 17.5. Thermoelectric effect
  • 136- 17.6. Exciton formation
  • 137- 17.7. Space-charge effect
  • 138- 17.8. Charge transport in the field-effect structure
  • 139- References
  • 140- 18. Holography and its applications / H. John Caulfield and Chandra S. Vikram. 18.1. Introduction
  • 141- 18.2. Basic information on holograms
  • 142- 18.2.1 Hologram types
  • 143- 18.3. Recording materials for holographic metamaterials
  • 144- 18.4. Computer-generated holograms
  • 145- 18.5. Simple functionalities of holographic materials
  • 146- 18.6. Phase conjugation and holographic optical elements
  • 147- 18.7. Related applications and procedures
  • 148- References
  • 149- In memoriam: Chandra S. Vikram
  • 150- 19. Slow and fast light / Joseph E. Vornehm, Jr. and Robert W. Boyd. 19.1. Introduction
  • 151- 19.2. Slow light based on material resonances
  • 152- 19.3. Slow light based on material structure
  • 153- 19.4. Additional considerations
  • 154- 19.5. Potential applications
  • 155- References
  • 156- About the editors
  • 157- Index.

"Tutorials in complex photonic media" Description:

The Open Library:

The field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In [i]Tutorials in Complex Photonic Media[/i], leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics.

Read “Tutorials in complex photonic media”:

Read “Tutorials in complex photonic media” by choosing from the options below.

Search for “Tutorials in complex photonic media” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Tutorials in complex photonic media” in Libraries Near You:

Read or borrow “Tutorials in complex photonic media” from your local library.

Buy “Tutorials in complex photonic media” online:

Shop for “Tutorials in complex photonic media” on popular online marketplaces.



Find "Tutorials In Complex Photonic Media" in Wikipdedia