Tutorials in complex photonic media - Info and Reading Options
By Mikhail A. Noginov
"Tutorials in complex photonic media" was published by SPIE Press in 2009 - Bellingham, Wash, it has 696 pages and the language of the book is English.
“Tutorials in complex photonic media” Metadata:
- Title: ➤ Tutorials in complex photonic media
- Author: Mikhail A. Noginov
- Language: English
- Number of Pages: 696
- Publisher: SPIE Press
- Publish Date: 2009
- Publish Location: Bellingham, Wash
“Tutorials in complex photonic media” Subjects and Themes:
- Subjects: Photonics - Photonic crystals - Metamaterials
Edition Specifications:
- Pagination: ➤ xxv, 696 p., [6] p. of plates :
Edition Identifiers:
- The Open Library ID: OL24434724M - OL15469561W
- Online Computer Library Center (OCLC) ID: 436387157
- Library of Congress Control Number (LCCN): 2009035663
- ISBN-13: 9780819477736
- ISBN-10: 0819477737
- All ISBNs: 0819477737 - 9780819477736
AI-generated Review of “Tutorials in complex photonic media”:
"Tutorials in complex photonic media" Table Of Contents:
- 1- Foreword
- 2- Preface
- 3- List of contributors
- 4- List of abbreviations
- 5- 1. Negative refraction / Martin W. McCall and Graeme Dewar. 1.1. Introduction
- 6- 1.2. Background
- 7- 1.3. Beyond natural media: waves that run backward
- 8- 1.4. Wires and rings
- 9- 1.5. Experimental confirmation
- 10- 1.6. The "perfect" lens
- 11- 1.7. The formal criterion for achieving negative phase velocity propagation
- 12- 1.8. Fermat's principle and negative space
- 13- 1.9. Cloaking
- 14- 1.10. Conclusion
- 15- Appendix I. The e([omega]) of a square wire array
- 16- Appendix II. Physics of the wire array's plasma frequency and damping rate
- 17- References
- 18- 2. Optical hyperspace: negative refractive index and subwavelength imaging / Leonid V. Alekseyev, Zubin Jacob, and Evgenii Narimanov. 2.1. Introduction
- 19- 2.2. Nonmagnetic negative refraction
- 20- 2.3. Hyperbolic dispersion: materials
- 21- 2.4. Applications
- 22- 2.5. Conclusion
- 23- References.
- 24- 3. Magneto-optics and the Kerr effect with ferromagnetic materials / Allan D. Boardman and Neil King. 3.1. Introduction to magneto-optical materials and concepts
- 25- 3.2. Reflection of light from a plane ferromagnetic surface
- 26- 3.3. Enhancing the Kerr effect with attenuated total reflection
- 27- 3.4. Numerical investigations of attenuated total reflection
- 28- 3.5. Conclusions
- 29- References
- 30- 4. Symmetry properties of nonlinear magneto-optical effects / Yutaka Kawabe. 4.1. Introduction
- 31- 4.2. Nonlinear optics in magnetic materials
- 32- 4.3. Magnetic-field-induced second-harmonic generation
- 33- 4.4. Effects due to an optical magnetic field or magnetic dipole moment transition
- 34- 4.5. Experiments
- 35- References
- 36- 5. Optical magnetism in plasmonic metamaterials / Gennady Shvets and Yaroslav A. Urzhumov. 5.1. Introduction
- 37- 5.2. Why is optical magnetism difficult to achieve?
- 38- 5.3. Effective quasistatic dielectric permittivity of a plasmonic metamaterial
- 39- 5.4. Summary
- 40- 5.5. Appendix. Electromagnetic red shifts of plasmonic resonances
- 41- References.
- 42- 6. Chiral photonic media / Ian Hodgkinson and Levi Bourke. 6.1. Introduction
- 43- 6.2. Stratified anisotropic media
- 44- 6.3. Chiral architectures and characteristic matrices
- 45- 6.4. Reflectance spectra and polarization response maps
- 46- 6.5. Summary
- 47- References
- 48- 7. Optical vortices / Kevin O'Holleran, Mark R. Dennis, and Miles J. Padgett. 7.1. Introduction
- 49- 7.2. Locating vortex lines
- 50- 7.3. Making beams containing optical vortices
- 51- 7.4. Topology of vortex lines
- 52- 7.5. Computer simulation of vortex structures
- 53- 7.6. Vortex structures in random fields
- 54- 7.7. Experiments for visualizing vortex structures
- 55- 7.8. Conclusions
- 56- References
- 57- 8. Photonic crystals: from fundamentals to functional photonic opals / Durga P. Aryal, Kosmas L. Tsakmakidis, and Ortwin Hess. 8.1. Introduction
- 58- 8.2. Principles of photonic crystals
- 59- 8.3. One-dimensional photonic crystals
- 60- 8.4. Generalization to two- and three-dimensional photonic crystals
- 61- 8.5. Physics of Inverse-Opal Photonic Crystals
- 62- 8.6. Double-Inverse-Opal Photonic Crystals (DIOPCs)
- 63- 8.7. Conclusion
- 64- 8.8. Appendix: Plane Wave Expansion (PWE) method
- 65- References
- 66- 9. Wave interference and modes in random media / Azriel Z. Genack and Sheng Zhang. 9.1. Introduction
- 67- 9.2. Wave interference
- 68- 9.3. Modes
- 69- 9.4. Conclusions
- 70- References
- 71- 10. Chaotic behavior of random lasers / Diederik S. Wiersma, Sushil Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo, Stefano Lepri. 10.1. Introduction
- 72- 10.2. Experiments on emission spectra
- 73- 10.3. Experiments on speckle patterns
- 74- 10.4. Modeling
- 75- 10.5. Lévy statistics in random laser emission
- 76- 10.6. Discussion
- 77- References.
- 78- 11. Lasing in random media / Hui Cao. 11.1. Introduction
- 79- 11.2. Random lasers with incoherent feedback
- 80- 11.3. Random lasers with coherent feedback
- 81- 11.4. Potential applications of random lasers
- 82- References. Color plate section. 12. Feedback in random lasers / Mikhail A. Noginov. 12.1. Introduction
- 83- 12.2. The concept of a laser
- 84- 12.3. Lasers with nonresonant feedback and random lasers
- 85- 12.4. Photon migration and localization in scattering media and their applications to random lasers
- 86- 12.5. Neodymium random lasers with nonresonant feedback
- 87- 12.6. ZnO random lasers with resonant feedback
- 88- 12.7. Stimulated emission feedback: from nonresonant to resonant and back to nonresonant
- 89- 12.8. Summary of various random laser operation regimes
- 90- References
- 91- 13. Optical metamaterials with zero loss and plasmonic nanolasers / Andrey K. Sarychev. 13.1. Introduction
- 92- 13.2. Magnetic plasmon resonance
- 93- 13.3. Electrodynamics of a nanowire resonator
- 94- 13.4. Capacitance and inductance of two parallel wires
- 95- 13.5. Lumped model of a resonator filled with an active medium
- 96- 13.6. Interaction of nanontennas with an active host medium
- 97- 13.7. Plasmonic nanolasers and optical magnetism
- 98- 13.8. Conclusions
- 99- References.
- 100- 14. Resonance energy transfer: theoretical foundations and developing applications / David L. Andrews. 14.1. Introduction
- 101- 14.2. Electromagnetic origins
- 102- 14.3. Features of the pair transfer rate
- 103- 14.4. Energy transfer in heterogeneous solids
- 104- 14.5. Directed energy transfer
- 105- 14.6. Developing applications
- 106- 14.7. Conclusion
- 107- References
- 108- 15. Optics of nanostructured materials from first principles / Vladimir I. Gavrilenko. 15.1. Introduction
- 109- 15.2. Optical response from first principles
- 110- 15.3. Effect of the local field in optics
- 111- 15.4. Electrons in quantum confined systems
- 112- 15.5. Cavity quantum electrodynamics
- 113- 15.6. Optical Raman spectroscopy of nanostructures
- 114- 15.7. Concluding remarks
- 115- Appendix I. Electron energy structure and standard density functional theory
- 116- Appendix II. Optical functions within perturbation theory
- 117- Appendix III. Evaluation of the polarization function including the local field effect
- 118- Appendix IV. Optical field Hamiltonian in second quantization representation
- 119- References.
- 120- 16 Organic photonic materials / Larry R. Dalton, Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbrict, Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. 16.1 Preface
- 121- 16.2 Introduction
- 122- 16.3 Effects of dielectric permittivity and dispersion
- 123- 16.4 Complex dendrimer materials: effects of covalent bonds
- 124- 16.5 Binary Chromophore Organic Glasses (BCOGs)
- 125- 16.6 Thermal and photochemical stability: lattice hardening
- 126- 16.7 Thermal and photochemical stability: measurement
- 127- 16.8 Devices and applications
- 128- 16.9 Summary and conclusions
- 129- 16.10. Appendix. Linear and nonlinear polarization
- 130- References.
- 131- 17. Charge transport and optical effects in disordered organic semiconductors / Harry H. L. Kwok, You-Lin Wu, and Tai-Ping Sun. 17.1. Introduction
- 132- 17.2. Charge transport
- 133- 17.3. Impedance spectroscopy: bias and temperature dependence
- 134- 17.4. Transient spectroscopy
- 135- 17.5. Thermoelectric effect
- 136- 17.6. Exciton formation
- 137- 17.7. Space-charge effect
- 138- 17.8. Charge transport in the field-effect structure
- 139- References
- 140- 18. Holography and its applications / H. John Caulfield and Chandra S. Vikram. 18.1. Introduction
- 141- 18.2. Basic information on holograms
- 142- 18.2.1 Hologram types
- 143- 18.3. Recording materials for holographic metamaterials
- 144- 18.4. Computer-generated holograms
- 145- 18.5. Simple functionalities of holographic materials
- 146- 18.6. Phase conjugation and holographic optical elements
- 147- 18.7. Related applications and procedures
- 148- References
- 149- In memoriam: Chandra S. Vikram
- 150- 19. Slow and fast light / Joseph E. Vornehm, Jr. and Robert W. Boyd. 19.1. Introduction
- 151- 19.2. Slow light based on material resonances
- 152- 19.3. Slow light based on material structure
- 153- 19.4. Additional considerations
- 154- 19.5. Potential applications
- 155- References
- 156- About the editors
- 157- Index.
"Tutorials in complex photonic media" Description:
The Open Library:
The field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In [i]Tutorials in Complex Photonic Media[/i], leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics.
Read “Tutorials in complex photonic media”:
Read “Tutorials in complex photonic media” by choosing from the options below.
Search for “Tutorials in complex photonic media” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Tutorials in complex photonic media” in Libraries Near You:
Read or borrow “Tutorials in complex photonic media” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Tutorials in complex photonic media” at a library near you.
Buy “Tutorials in complex photonic media” online:
Shop for “Tutorials in complex photonic media” on popular online marketplaces.
- Ebay: New and used books.