"Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms" - Information and Links:

Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms - Info and Reading Options

"Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms" and the language of the book is English.


“Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” Metadata:

  • Title: ➤  Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms
  • Author: ➤  
  • Language: English

Edition Identifiers:

  • Internet Archive ID: 17-24311

AI-generated Review of “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms”:


"Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms" Description:

The Internet Archive:

Efficient tax debt collection is a challenge for Moroccan local tax authorities. This article explores the potential of machine learning techniques and novel strategies to enhance efficiency in this process. We present a practical use case demonstrating the application of machine learning for taxpayer segmentation, improving accuracy in identifying high-risk debtors. Using a comprehensive dataset of tax payment behavior, we showcase the effectiveness of machine learning algorithms in segmenting taxpayers based on their likelihood of non compliance or debt accumulation. We also investigate innovative strategies that integrate behavioral economics principles to enable better targeted interventions. Real-world case studies in local tax debt collection highlight the impact of these strategies. The findings underscore the transformative potential of machine learning techniques and novel strategies in improving the efficiency of local tax debt collection. Accurate identification of high-risk debtors and tailored enforcement actions help maximize revenue while minimizing resource waste. This research contributes to the existing knowledge by providing insights into the implementation of machine learning techniques and novel strategies in tax debt collection. It emphasizes the importance of data-driven approaches and highlights how local tax authorities can drive efficiency and optimize revenue collection by embracing these advancements.

Read “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms”:

Read “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” by choosing from the options below.

Available Downloads for “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms”:

"Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 9.53 Mbs, and the file-s went public at Thu Nov 28 2024.

Legal and Safety Notes

Copyright Disclaimer and Liability Limitation:

A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.

B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.

C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.

D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.

E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.

Virus Scanning for Your Peace of Mind:

The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:

How to scan a direct download link for viruses:

  • 1- Copy the direct link to the file you want to download (don’t open it yet).
  • (a free online tool) and paste the direct link into the provided field to start the scan.
  • 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
  • 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
  • 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.

Available Downloads

  • Source: Internet Archive
  • Internet Archive Link: Archive.org page
  • All Files are Available: Yes
  • Number of Files: 15
  • Number of Available Files: 15
  • Added Date: 2024-11-28 03:50:06
  • Scanner: Internet Archive HTML5 Uploader 1.7.0
  • PPI (Pixels Per Inch): 300
  • OCR: tesseract 5.3.0-6-g76ae
  • OCR Detected Language: en

Available Files:

1- Text PDF

  • File origin: original
  • File Format: Text PDF
  • File Size: 0.00 Mbs
  • File Name: 17 24311.pdf
  • Direct Link: Click here

2- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: 17-24311_files.xml
  • Direct Link: Click here

3- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: 17-24311_meta.sqlite
  • Direct Link: Click here

4- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: 17-24311_meta.xml
  • Direct Link: Click here

5- Item Tile

  • File origin: original
  • File Format: Item Tile
  • File Size: 0.00 Mbs
  • File Name: __ia_thumb.jpg
  • Direct Link: Click here

6- chOCR

  • File origin: derivative
  • File Format: chOCR
  • File Size: 0.00 Mbs
  • File Name: 17 24311_chocr.html.gz
  • Direct Link: Click here

7- DjVuTXT

  • File origin: derivative
  • File Format: DjVuTXT
  • File Size: 0.00 Mbs
  • File Name: 17 24311_djvu.txt
  • Direct Link: Click here

8- Djvu XML

  • File origin: derivative
  • File Format: Djvu XML
  • File Size: 0.00 Mbs
  • File Name: 17 24311_djvu.xml
  • Direct Link: Click here

9- hOCR

  • File origin: derivative
  • File Format: hOCR
  • File Size: 0.00 Mbs
  • File Name: 17 24311_hocr.html
  • Direct Link: Click here

10- OCR Page Index

  • File origin: derivative
  • File Format: OCR Page Index
  • File Size: 0.00 Mbs
  • File Name: 17 24311_hocr_pageindex.json.gz
  • Direct Link: Click here

11- OCR Search Text

  • File origin: derivative
  • File Format: OCR Search Text
  • File Size: 0.00 Mbs
  • File Name: 17 24311_hocr_searchtext.txt.gz
  • Direct Link: Click here

12- Single Page Processed JP2 ZIP

  • File origin: derivative
  • File Format: Single Page Processed JP2 ZIP
  • File Size: 0.01 Mbs
  • File Name: 17 24311_jp2.zip
  • Direct Link: Click here

13- Page Numbers JSON

  • File origin: derivative
  • File Format: Page Numbers JSON
  • File Size: 0.00 Mbs
  • File Name: 17 24311_page_numbers.json
  • Direct Link: Click here

14- Scandata

  • File origin: derivative
  • File Format: Scandata
  • File Size: 0.00 Mbs
  • File Name: 17 24311_scandata.xml
  • Direct Link: Click here

15- Archive BitTorrent

  • File origin: metadata
  • File Format: Archive BitTorrent
  • File Size: 0.00 Mbs
  • File Name: 17-24311_archive.torrent
  • Direct Link: Click here

Search for “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” in Libraries Near You:

Read or borrow “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” from your local library.

Buy “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” online:

Shop for “Towards A New Approach To Maximize Tax Collection Using Machine Learning Algorithms” on popular online marketplaces.