Testing problems with linear or angular inequality constraints - Info and Reading Options
By Johan C. Akkerboom
"Testing problems with linear or angular inequality constraints" was published by Springer-Verlag in 1990 - New York, it has 291 pages and the language of the book is English.
“Testing problems with linear or angular inequality constraints” Metadata:
- Title: ➤ Testing problems with linear or angular inequality constraints
- Author: Johan C. Akkerboom
- Language: English
- Number of Pages: 291
- Publisher: Springer-Verlag
- Publish Date: 1990
- Publish Location: New York
“Testing problems with linear or angular inequality constraints” Subjects and Themes:
- Subjects: ➤ Asymptotic theory - Statistical hypothesis testing - Statistics - Inequalities (Mathematics) - Infinite Processes - Mathematical statistics - Linear models (Statistics)
Edition Specifications:
- Pagination: xii, 291 p. :
Edition Identifiers:
- The Open Library ID: OL1929082M - OL4526992W
- Online Computer Library Center (OCLC) ID: 21313332
- Library of Congress Control Number (LCCN): 90143766
- ISBN-13: 9783540972327 - 9780387972329
- ISBN-10: 0387972323 - 3540972323
- All ISBNs: 0387972323 - 3540972323 - 9783540972327 - 9780387972329
AI-generated Review of “Testing problems with linear or angular inequality constraints”:
"Testing problems with linear or angular inequality constraints" Description:
The Open Library:
Represents a self-contained account of a new promising and generally applicable approach to a large class of one-sided testing problems, where the alternative is restricted by at least two linear inequalities. It highlights the geometrical structure of these problems. It gives guidance in the construction of a so-called Circular Likelihood Ratio (CLR) test, which is obtained if the linear inequalities, or polyhedral cone, are replaced by one suitable angular inequality, or circular cone. Such a test will often constitute a nice and easy-to-use compromise between the LR-test and a suitable linear test against the original alternative. The book treats both theory and practice of CLR-tests. For cases with up to 13 linear inequalities, it evaluates the power of CLR-tests, derives the most stringent CLR-test, and provides tables of critical values. It is of interest both to the specialist in order- restricted inference and to the statistical consultant in need of simple and powerful one-sided tests. Many examples are worked out for ANOVA, goodness-of-fit, and contingency table problems. Case studies are devoted to Mokken's one- dimensional scaling model, one-sided treatment comparison in a two-period crossover trial, and some real data ANOVA- layouts (biology and educational psychology).
Read “Testing problems with linear or angular inequality constraints”:
Read “Testing problems with linear or angular inequality constraints” by choosing from the options below.
Search for “Testing problems with linear or angular inequality constraints” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Testing problems with linear or angular inequality constraints” in Libraries Near You:
Read or borrow “Testing problems with linear or angular inequality constraints” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Testing problems with linear or angular inequality constraints” at a library near you.
Buy “Testing problems with linear or angular inequality constraints” online:
Shop for “Testing problems with linear or angular inequality constraints” on popular online marketplaces.
- Ebay: New and used books.