"Simulation modeling using @Risk" - Information and Links:

Simulation modeling using @Risk - Info and Reading Options

updated for Version 4

"Simulation modeling using @Risk" was published by Brooks/Cole Pub. Co. in 2001 - Pacific Grove, CA, it has 226 pages and the language of the book is English.


“Simulation modeling using @Risk” Metadata:

  • Title: ➤  Simulation modeling using @Risk
  • Author:
  • Language: English
  • Number of Pages: 226
  • Publisher: Brooks/Cole Pub. Co.
  • Publish Date:
  • Publish Location: Pacific Grove, CA

“Simulation modeling using @Risk” Subjects and Themes:

Edition Specifications:

  • Pagination: viii, 226 p. :

Edition Identifiers:

AI-generated Review of “Simulation modeling using @Risk”:


"Simulation modeling using @Risk" Table Of Contents:

  • 1- Machine generated contents note: Chapter 1: What Is Simulation? 1
  • 2- 1.1 Actual Applications of Simulation 2
  • 3- 1.2 What's Ahead? 4
  • 4- 1.3 Simulation Models Versus Analytic Models 6
  • 5- Chapter 2: Random Numbers-The Building Blocks of Simulation 9
  • 6- Problems 11
  • 7- Chapter 3: Using Spreadsheets to Perform Simulations 13
  • 8- Example 3.1: The Newsvendor Problem 13
  • 9- 3.1 Finding a Confidence Interval for Expected Profit 18
  • 10- 3.2 How Many Trials Do We Need? 18
  • 11- 3.3 Determination of the Optimal Order Quantity 19
  • 12- 3.4 Using Excel Data Tables to Repeat a Simulation 24
  • 13- 3.5 Performing the Newsvendor Simulation with the Excel
  • 14- Random Number Generator 28
  • 15- Problems 30
  • 16- Chapter 4: An Introduction to @RISK 33
  • 17- 4.1 Simulating the Newsvendor Example with @RISK 33
  • 18- 4.2 Explanation of Statistical Results 40
  • 19- 4.3 Conclusions 41
  • 20- Chapter 5: Generating Normal Random Variables 43
  • 21- 5.1 Simulating Normal Demand with @RISK 43
  • 22- 5.2 Using the Graph Type Icons 45
  • 23- 5.3 Placing Target Values in the Statistics Output 46
  • 24- 5.4 Estimating the Mean and Standard Deviation of a Normal Distribution 46
  • 25- Problems 47
  • 26- Chapter 6: Applications of Simulation to Corporate Financial Planning 49
  • 27- 6.1 Using the Triangular Distribution to Model Sales 57
  • 28- 6.2 Sensitivity Analysis with Tornado Graphs 59
  • 29- 6.3 Sensitivity Analysis with Scenarios 61
  • 30- 6.4 Alternative Modeling Strategies 62
  • 31- Problems 63
  • 32- Chapter 7: Simulating a Cash Budget 69
  • 33- Example 7.1: Cash Budgeting 69
  • 34- Problems 75
  • 35- Chapter 8: A Simulation Approach to Capacity Planning 83
  • 36- Example 8.1: Wozac Capacity Example 83
  • 37- Problems 89
  • 38- Chapter 9: Simulation and Bidding 93
  • 39- 9.1 Uniform Random Variables 93
  • 40- 9.2 A Bidding Example 93
  • 41- Problems 95
  • 42- Chapter 10: Deming's Funnel Experiment 97
  • 43- 10.1 Simulating Rule 1 (Don't Touch That Funnel!) 98
  • 44- 10.2 Simulating Rule 2 100
  • 45- 10.3 Comparison of Rules 1-4 102
  • 46- 10.4 Lesson of the Funnel Experiment 102
  • 47- 10.5 Mathematical Explanation of the Funnel Experiment 102
  • 48- Problems 104
  • 49- Chapter 11: The Taguchi Loss Function 105
  • 50- 11.1 Using @RISK to Quantify Quality Loss 106
  • 51- Problems 108
  • 52- Chapter 12: The Use of Simulation in Project Management 111
  • 53- Example 12.1: The Widgetco Example 111
  • 54- 12.1 Estimating Probability Distribution of Project Completion Time 113
  • 55- 12.2 Determining the Probability That an Activity Is Critical 117
  • 56- 12.3 The Beta Distribution and Project Management 118
  • 57- Problems 120
  • 58- Chapter 13: Simulating Craps (and Other Games) 123
  • 59- Example 13.1: Simulating Craps 123
  • 60- 13.1 Confidence Interval for Winning at Craps 125
  • 61- problems 126
  • 62- Chapter 14: Using Simulation to Determine Optimal Maintenance Policies 129
  • 63- Example 14.1 129
  • 64- Problems 133
  • 65- Chapter 15: Using the Weibull Distribution to Model Machine Life 135
  • 66- Example 15.1: Simulating Equipment Replacement Decisions 136
  • 67- Problems 139
  • 68- Chapter 16: Simulating Stock Prices and Options 141
  • 69- 16.1 Modeling the Price of a Stock 141
  • 70- 16.2 Estimating the Mean and Standard Deviation of Stock Returns
  • 71- from Historical Data 142
  • 72- 16.3 What Is an Option? 144
  • 73- 16.4 Pricing a Call Option 145
  • 74- Example 16.1a: Pricing a European Call Option with @RISK 145
  • 75- 16.5 Analyzing a Portfolio of Investments 148
  • 76- Example 16.1b: Simulating Portfolio Return 149
  • 77- Problems 153
  • 78- Chapter 17: Pricing Path-Dependent and Exotic Options 157
  • 79- Example 17.1: Pricing a Path-Dependent Option 158
  • 80- Problems 160
  • 81- Chapter 18: Using Immunization to Manage Interest Rate Risk 161
  • 82- 18.1 Duration 164
  • 83- 18.2 Convexity 165
  • 84- 18.3 Immunization Against Interest Rate Risk 165
  • 85- Example 18.1: Immunization Using Solver 165
  • 86- 18.4 Better Models'for Interest Rate Risk 172
  • 87- Problems 172
  • 88- Chapter 19: Hedging with Futures 175
  • 89- 19.1 Hedging with Futures: The Basics 175
  • 90- 19.2 Modeling Futures Risk with @RISK 176
  • 91- Problems 179
  • 92- Chapter 20: Modeling Market Share 183
  • 93- Example 20.1a: Market Share Simulation 183
  • 94- 20.1 Is Advertising Worthwhile? 185
  • 95- Example 20. b: Advertising Effectiveness 185
  • 96- 20.2 To Coupon or Not to Coupon? 187
  • 97- Example 20.1c: Should Coke Give Out Coupons? 187
  • 98- Problems 189
  • 99- Chapter 21: Generating Correlated Variables: Designing a New Product 193
  • 100- Example 21.1 193
  • 101- Problems 200
  • 102- Chapter 22: Simulating Sampling Plans with the Hypergeometric
  • 103- Distribution 205
  • 104- Example 22.1: Simulating a Sampling Plan 206
  • 105- Problems 207
  • 106- Chapter 23: Simulating Inventory Models 209
  • 107- Example 23.1: Simulating a Periodic Review Inventory System 210
  • 108- Problems 214
  • 109- Chapter 24: Simulating a Single-Server Queuing System 217
  • 110- Example 24.1: Queuing Simulation in RISK 217
  • 111- 24.1 Estimating the Operating Characteristics of a Queuing System 223
  • 112- Problems 224
  • 113- Index 225.

Read “Simulation modeling using @Risk”:

Read “Simulation modeling using @Risk” by choosing from the options below.

Search for “Simulation modeling using @Risk” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Simulation modeling using @Risk” in Libraries Near You:

Read or borrow “Simulation modeling using @Risk” from your local library.

Buy “Simulation modeling using @Risk” online:

Shop for “Simulation modeling using @Risk” on popular online marketplaces.