"Nonlinear Digital Filtering with Python" - Information and Links:

Nonlinear Digital Filtering with Python

An Introduction

"Nonlinear Digital Filtering with Python" is published by Taylor & Francis Group in 2018 - Erscheinungsort nicht ermittelbar, it has 286 pages and the language of the book is English.


“Nonlinear Digital Filtering with Python” Metadata:

  • Title: ➤  Nonlinear Digital Filtering with Python
  • Authors:
  • Language: English
  • Number of Pages: 286
  • Publisher: Taylor & Francis Group
  • Publish Date:
  • Publish Location: ➤  Erscheinungsort nicht ermittelbar

“Nonlinear Digital Filtering with Python” Subjects and Themes:

Edition Identifiers:

AI-generated Review of “Nonlinear Digital Filtering with Python”:


"Nonlinear Digital Filtering with Python" Description:

Open Data:

Nonlinear Digital Filtering with Python: An Introduction discusses important structural filter classes including the median filter and a number of its extensions (e.g., weighted and recursive median filters), and Volterra filters based on polynomial nonlinearities. Adopting both structural and behavioral approaches in characterizing and designing nonlinear digital filters, this book: Begins with an expedient introduction to programming in the free, open-source computing environment of Python Uses results from algebra and the theory of functional equations to construct and characterize behaviorally defined nonlinear filter classes Analyzes the impact of a range of useful interconnection strategies on filter behavior, providing Python implementations of the presented filters and interconnection strategies Proposes practical, bottom-up strategies for designing more complex and capable filters from simpler components in a way that preserves the key properties of these components Illustrates the behavioral consequences of allowing recursive (i.e., feedback) interconnections in nonlinear digital filters while highlighting a challenging but promising research frontier Nonlinear Digital Filtering with Python: An Introduction supplies essential knowledge useful for developing and implementing data cleaning filters for dynamic data analysis and time-series modeling

Read “Nonlinear Digital Filtering with Python”:

Read “Nonlinear Digital Filtering with Python” by choosing from the options below.

Search for “Nonlinear Digital Filtering with Python” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Nonlinear Digital Filtering with Python” in Libraries Near You:

Read or borrow “Nonlinear Digital Filtering with Python” from your local library.

Buy “Nonlinear Digital Filtering with Python” online:

Shop for “Nonlinear Digital Filtering with Python” on popular online marketplaces.