"NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes" - Information and Links:

NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes - Info and Reading Options

"NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes" and the language of the book is English.


“NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” Metadata:

  • Title: ➤  NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes
  • Author: ➤  
  • Language: English

Edition Identifiers:

  • Internet Archive ID: NASA_NTRS_Archive_19980018325

AI-generated Review of “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes”:


"NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes" Description:

The Internet Archive:

A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.

Read “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes”:

Read “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” by choosing from the options below.

Available Downloads for “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes”:

"NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 58.37 Mbs, and the file-s went public at Sat Oct 15 2016.

Legal and Safety Notes

Copyright Disclaimer and Liability Limitation:

A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.

B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.

C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.

D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.

E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.

Virus Scanning for Your Peace of Mind:

The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:

How to scan a direct download link for viruses:

  • 1- Copy the direct link to the file you want to download (don’t open it yet).
  • (a free online tool) and paste the direct link into the provided field to start the scan.
  • 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
  • 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
  • 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.

Available Downloads

  • Source: Internet Archive
  • Internet Archive Link: Archive.org page
  • All Files are Available: Yes
  • Number of Files: 12
  • Number of Available Files: 12
  • Added Date: 2016-10-15 02:45:44
  • PPI (Pixels Per Inch): 600
  • OCR: ABBYY FineReader 11.0

Available Files:

1- Text PDF

  • File origin: original
  • File Format: Text PDF
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325.pdf
  • Direct Link: Click here

2- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_files.xml
  • Direct Link: Click here

3- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_meta.sqlite
  • Direct Link: Click here

4- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_meta.xml
  • Direct Link: Click here

5- Item Tile

  • File origin: original
  • File Format: Item Tile
  • File Size: 0.00 Mbs
  • File Name: __ia_thumb.jpg
  • Direct Link: Click here

6- Animated GIF

  • File origin: derivative
  • File Format: Animated GIF
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325.gif
  • Direct Link: Click here

7- Abbyy GZ

  • File origin: derivative
  • File Format: Abbyy GZ
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_abbyy.gz
  • Direct Link: Click here

8- DjVuTXT

  • File origin: derivative
  • File Format: DjVuTXT
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_djvu.txt
  • Direct Link: Click here

9- Djvu XML

  • File origin: derivative
  • File Format: Djvu XML
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_djvu.xml
  • Direct Link: Click here

10- Single Page Processed JP2 ZIP

  • File origin: derivative
  • File Format: Single Page Processed JP2 ZIP
  • File Size: 0.05 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_jp2.zip
  • Direct Link: Click here

11- Scandata

  • File origin: derivative
  • File Format: Scandata
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_scandata.xml
  • Direct Link: Click here

12- Archive BitTorrent

  • File origin: metadata
  • File Format: Archive BitTorrent
  • File Size: 0.00 Mbs
  • File Name: NASA_NTRS_Archive_19980018325_archive.torrent
  • Direct Link: Click here

Search for “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” in Libraries Near You:

Read or borrow “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” from your local library.

Buy “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” online:

Shop for “NASA Technical Reports Server (NTRS) 19980018325: Trellises And Trellis-Based Decoding Algorithms For Linear Block Codes” on popular online marketplaces.