Multivariate generalized linear mixed models using R - Info and Reading Options
By Damon Berridge
"Multivariate generalized linear mixed models using R" was published by CRC Press in 2011 - Boca Raton, FL, it has 280 pages and the language of the book is English.
“Multivariate generalized linear mixed models using R” Metadata:
- Title: ➤ Multivariate generalized linear mixed models using R
- Author: Damon Berridge
- Language: English
- Number of Pages: 280
- Publisher: CRC Press
- Publish Date: 2011
- Publish Location: Boca Raton, FL
“Multivariate generalized linear mixed models using R” Subjects and Themes:
- Subjects: ➤ Statistical methods - Multivariate analysis - Data processing - Mathematical models - Social sciences - Research - Social sciences, statistical methods - Statistics & numerical data - Multivariate Analysis - Sciences sociales - Recherche - Modèles mathématiques - Méthodes statistiques - Informatique - Analyse multivariée - SOCIAL SCIENCE - Methodology - R (computerprogramma) - Multivariate analyse - Lineaire modellen
Edition Specifications:
- Pagination: xxiii, 280 p. :
Edition Identifiers:
- The Open Library ID: OL25060748M - OL16183890W
- Online Computer Library Center (OCLC) ID: 728102118 - 756675740
- Library of Congress Control Number (LCCN): 2011016989
- ISBN-13: 9781439813263
- ISBN-10: 1439813264
- All ISBNs: 1439813264 - 9781439813263
AI-generated Review of “Multivariate generalized linear mixed models using R”:
"Multivariate generalized linear mixed models using R" Table Of Contents:
- 1- Machine generated contents note: -- 2.1.
- 2- Introduction -- -- 2.2.
- 3- Continuous/interval scale data -- -- 2.3.
- 4- Simple and multiple linear regression models -- -- 2.4.
- 5- Checking assumptions in linear regression models -- -- 2.5.
- 6- Likelihood: multiple linear regression -- -- 2.6.
- 7- Comparing model likelihoods -- -- 2.7.
- 8- Application of a multiple linear regression model -- -- 2.8.
- 9- Exercises on linear models -- -- 3.1.
- 10- Binary data -- -- 3.1.1.
- 11- Introduction -- -- 3.1.2.
- 12- Logistic regression -- -- 3.1.3.
- 13- Logit and probit transformations -- -- 3.1.4.
- 14- General logistic regression -- -- 3.1.5.
- 15- Likelihood -- -- 3.1.6.
- 16- Example with binary data -- -- 3.2.
- 17- Ordinal data -- -- 3.2.1.
- 18- Introduction -- -- 3.2.2.
- 19- The ordered logit model -- -- 3.2.3.
- 20- Dichotomization of ordered categories -- -- 3.2.4.
- 21- Likelihood -- -- 3.2.5.
- 22- Example with ordered data -- -- 3.3.
- 23- Count data -- -- 3.3.1.
- 24- Introduction -- -- 3.3.2.
- 25- Poisson regression models -- -- 3.3.3.
- 26- Likelihood -- -- 3.3.4.
- 27- Example with count data -- -- 3.4.
- 28- Exercises -- -- 4.1.
- 29- Introduction -- -- 4.2.
- 30- The linear model
- 31- 4.3.
- 32- The binary response model -- -- 4.4.
- 33- The Poisson model -- -- 4.5.
- 34- Likelihood -- -- 5.1.
- 35- Introduction -- -- 5.2.
- 36- Linear mixed model -- -- 5.3.
- 37- The intraclass correlation coefficient -- -- 5.4.
- 38- Parameter estimation by maximum likelihood -- -- 5.5.
- 39- Regression with level-two effects -- -- 5.6.
- 40- Two-level random intercept models -- -- 5.7.
- 41- General two-level models including random intercepts -- -- 5.8.
- 42- Likelihood -- -- 5.9.
- 43- Residuals -- -- 5.10.
- 44- Checking assumptions in mixed models -- -- 5.11.
- 45- Comparing model likelihoods -- -- 5.12.
- 46- Application of a two-level linear model -- -- 5.13.
- 47- Two-level growth models -- -- 5.13.1.
- 48- A two-level repeated measures model -- -- 5.13.2.
- 49- A linear growth model -- -- 5.13.3.
- 50- A quadratic growth model -- -- 5.14.
- 51- Likelihood -- -- 5.15.
- 52- Example using linear growth models -- -- 5.16.
- 53- Exercises using mixed models for continuous/interval scale data -- -- 6.1.
- 54- Introduction -- -- 6.2.
- 55- The two-level logistic model -- -- 6.3.
- 56- General two-level logistic models -- -- 6.4.
- 57- Intraclass correlation coefficient -- -- 6.5.
- 58- Likelihood -- -- 6.6.
- 59- Example using binary data -- -- 6.7.
- 60- Exercises using mixed models for binary data
- 61- 7.1.
- 62- Introduction -- -- 7.2.
- 63- The two-level ordered logit model -- -- 7.3.
- 64- Likelihood -- -- 7.4.
- 65- Example using mixed models for ordered data -- -- 7.5.
- 66- Exercises using mixed models for ordinal data -- -- 8.1.
- 67- Introduction -- -- 8.2.
- 68- The two-level Poisson model -- -- 8.3.
- 69- Likelihood -- -- 8.4.
- 70- Example using mixed models for count data -- -- 8.5.
- 71- Exercises using mixed models for count data -- -- 9.1.
- 72- Introduction -- -- 9.2.
- 73- The mixed linear model -- -- 9.3.
- 74- The mixed binary response model -- -- 9.4.
- 75- The mixed Poisson model -- -- 9.5.
- 76- Likelihood -- -- 10.1.
- 77- Introduction -- -- 10.2.
- 78- Three-level random intercept models -- -- 10.3.
- 79- Three-level generalized linear models -- -- 10.4.
- 80- Linear models -- -- 10.5.
- 81- Binary response models -- -- 10.6.
- 82- Likelihood -- -- 10.7.
- 83- Example using three-level generalized linear models -- -- 10.8.
- 84- Exercises using three-level generalized linear mixed models -- -- 11.1.
- 85- Introduction -- -- 11.2.
- 86- Multivariate two-level generalized linear model -- -- 11.3.
- 87- Bivariate Poisson model: example -- -- 11.4.
- 88- Bivariate ordered response model: example -- -- 11.5.
- 89- Bivariate linear-probit model: example -- -- 11.6.
- 90- Multivariate two-level generalized linear model likelihood
- 91- 11.7.
- 92- Exercises using multivariate generalized linear mixed models -- -- 12.1.
- 93- Introduction -- -- 12.1.1.
- 94- Left censoring -- -- 12.1.2.
- 95- Right censoring -- -- 12.1.3.
- 96- Time-varying explanatory variables -- -- 12.1.4.
- 97- Competing risks -- -- 12.2.
- 98- Duration data in discrete time -- -- 12.2.1.
- 99- Single-level models for duration data -- -- 12.2.2.
- 100- Two-level models for duration data -- -- 12.2.3.
- 101- Three-level models for duration data -- -- 12.3.
- 102- Renewal data -- -- 12.3.1.
- 103- Introduction -- -- 12.3.2.
- 104- Example: renewal models -- -- 12.4.
- 105- Competing risk data -- -- 12.4.1.
- 106- Introduction -- -- 12.4.2.
- 107- Likelihood -- -- 12.4.3.
- 108- Example: competing risk data -- -- 12.5.
- 109- Exercises using renewal and competing risks models -- -- 13.1.
- 110- Introduction -- -- 13.2.
- 111- Mover-stayer model -- -- 13.3.
- 112- Likelihood incorporating the mover-stayer model -- -- 13.4.
- 113- Example 1: stayers within count data -- -- 13.5.
- 114- Example 2: stayers within binary data -- -- 13.6.
- 115- Exercises: stayers -- -- 14.1.
- 116- Introduction to key issues: heterogeneity, state dependence and non-stationarity -- -- 14.2.
- 117- Example -- -- 14.3.
- 118- Random effects models -- -- 14.4.
- 119- Initial conditions problem -- -- 14.5.
- 120- Initial treatment
- 121- 14.6.
- 122- Example: depression data -- -- 14.7.
- 123- Classical conditional analysis -- -- 14.8.
- 124- Classical conditional model: example -- -- 14.9.
- 125- Conditioning on initial response but allowing random effect uol to be dependent on z3 -- -- 14.10.
- 126- Wooldridge conditional model: example -- -- 14.11.
- 127- Modelling the initial conditions -- -- 14.12.
- 128- Same random effect in the initial response and subsequent response models with a common scale parameter -- -- 14.13.
- 129- Joint analysis with a common random effect: example -- -- 14.14.
- 130- Same random effect in models of the initial response and subsequent responses but with different scale parameters -- -- 14.15.
- 131- Joint analysis with a common random effect (different scale parameters): example -- -- 14.16.
- 132- Different random effects in models of the initial response and subsequent responses -- -- 14.17.
- 133- Different random effects: example -- -- 14.18.
- 134- Embedding the Wooldridge approach in joint models for the initial response and subsequent responses -- -- 14.19.
- 135- Joint model incorporating the Wooldridge approach: example -- -- 14.20.
- 136- Other link functions -- -- 14.21.
- 137- Exercises using models incorporating initial conditions/state dependence in binary data
- 138- 15.1.
- 139- Introduction -- -- 15.2.
- 140- Fixed effects treatment of the two-level linear model -- -- 15.3.
- 141- Dummy variable specification of the fixed effects model -- -- 15.4.
- 142- Empirical comparison of two-level fixed effects and random effects estimators -- -- 15.5.
- 143- Implicit fixed effects estimator -- -- 15.6.
- 144- Random effects models -- -- 15.7.
- 145- Comparing two-level fixed effects and random effects models -- -- 15.8.
- 146- Fixed effects treatment of the three-level linear model -- -- 15.9.
- 147- Exercises comparing fixed effects and random effects -- -- A.1.
- 148- SabreR installation -- -- A.2.
- 149- SabreR commands -- -- A.2.1.
- 150- The arguments of the SabreR object -- -- A.2.2.
- 151- The anatomy of a SabreR command file -- -- A.3.
- 152- Quadrature -- -- A.3.1.
- 153- Standard Gaussian quadrature -- -- A.3.2.
- 154- Performance of Gaussian quadrature -- -- A.3.3.
- 155- Adaptive quadrature -- -- A.4.
- 156- Estimation -- -- A.4.1.
- 157- Maximizing the log likelihood of random effects models -- -- A.5.
- 158- Fixed effects linear models -- -- A.6.
- 159- Endogenous and exogenous variables -- -- B.1.
- 160- Getting started with R -- -- B.1.1.
- 161- Preliminaries -- -- B.1.1.1.
- 162- Working with R in interactive mode -- -- B.1.1.2.
- 163- Basic functions -- -- B.1.1.3.
- 164- Getting help
- 165- B.1.1.4.
- 166- Stopping R -- -- B.1.2.
- 167- Creating and manipulating data -- -- B.1.2.1.
- 168- Vectors and lists -- -- B.1.2.2.
- 169- Vectors -- -- B.1.2.3.
- 170- Vector operations -- -- B.1.2.4.
- 171- Lists -- -- B.1.2.5.
- 172- Data frames -- -- B.1.3.
- 173- Session management -- -- B.1.3.1.
- 174- Managing objects -- -- B.1.3.2.
- 175- Attaching and detaching objects -- -- B.1.3.3.
- 176- Serialization -- -- B.1.3.4.
- 177- R scripts -- -- B.1.3.5.
- 178- Batch processing -- -- B.1.4.
- 179- R packages -- -- B.1.4.1.
- 180- Loading a package into R -- -- B.1.4.2.
- 181- Installing a package for use in R -- -- B.1.4.3.
- 182- R and Statistics -- -- B.2.
- 183- Data preparation for SabreR -- -- B.2.1.
- 184- Creation of dummy variables -- -- B.2.2.
- 185- Missing values -- -- B.2.3.
- 186- Creating lagged response covariate data.
Read “Multivariate generalized linear mixed models using R”:
Read “Multivariate generalized linear mixed models using R” by choosing from the options below.
Search for “Multivariate generalized linear mixed models using R” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Multivariate generalized linear mixed models using R” in Libraries Near You:
Read or borrow “Multivariate generalized linear mixed models using R” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Multivariate generalized linear mixed models using R” at a library near you.
Buy “Multivariate generalized linear mixed models using R” online:
Shop for “Multivariate generalized linear mixed models using R” on popular online marketplaces.
- Ebay: New and used books.