"Multivariate generalized linear mixed models using R" - Information and Links:

Multivariate generalized linear mixed models using R - Info and Reading Options

"Multivariate generalized linear mixed models using R" was published by CRC Press in 2011 - Boca Raton, FL, it has 280 pages and the language of the book is English.


“Multivariate generalized linear mixed models using R” Metadata:

  • Title: ➤  Multivariate generalized linear mixed models using R
  • Author:
  • Language: English
  • Number of Pages: 280
  • Publisher: CRC Press
  • Publish Date:
  • Publish Location: Boca Raton, FL

“Multivariate generalized linear mixed models using R” Subjects and Themes:

Edition Specifications:

  • Pagination: xxiii, 280 p. :

Edition Identifiers:

AI-generated Review of “Multivariate generalized linear mixed models using R”:


"Multivariate generalized linear mixed models using R" Table Of Contents:

  • 1- Machine generated contents note: -- 2.1.
  • 2- Introduction -- -- 2.2.
  • 3- Continuous/interval scale data -- -- 2.3.
  • 4- Simple and multiple linear regression models -- -- 2.4.
  • 5- Checking assumptions in linear regression models -- -- 2.5.
  • 6- Likelihood: multiple linear regression -- -- 2.6.
  • 7- Comparing model likelihoods -- -- 2.7.
  • 8- Application of a multiple linear regression model -- -- 2.8.
  • 9- Exercises on linear models -- -- 3.1.
  • 10- Binary data -- -- 3.1.1.
  • 11- Introduction -- -- 3.1.2.
  • 12- Logistic regression -- -- 3.1.3.
  • 13- Logit and probit transformations -- -- 3.1.4.
  • 14- General logistic regression -- -- 3.1.5.
  • 15- Likelihood -- -- 3.1.6.
  • 16- Example with binary data -- -- 3.2.
  • 17- Ordinal data -- -- 3.2.1.
  • 18- Introduction -- -- 3.2.2.
  • 19- The ordered logit model -- -- 3.2.3.
  • 20- Dichotomization of ordered categories -- -- 3.2.4.
  • 21- Likelihood -- -- 3.2.5.
  • 22- Example with ordered data -- -- 3.3.
  • 23- Count data -- -- 3.3.1.
  • 24- Introduction -- -- 3.3.2.
  • 25- Poisson regression models -- -- 3.3.3.
  • 26- Likelihood -- -- 3.3.4.
  • 27- Example with count data -- -- 3.4.
  • 28- Exercises -- -- 4.1.
  • 29- Introduction -- -- 4.2.
  • 30- The linear model
  • 31- 4.3.
  • 32- The binary response model -- -- 4.4.
  • 33- The Poisson model -- -- 4.5.
  • 34- Likelihood -- -- 5.1.
  • 35- Introduction -- -- 5.2.
  • 36- Linear mixed model -- -- 5.3.
  • 37- The intraclass correlation coefficient -- -- 5.4.
  • 38- Parameter estimation by maximum likelihood -- -- 5.5.
  • 39- Regression with level-two effects -- -- 5.6.
  • 40- Two-level random intercept models -- -- 5.7.
  • 41- General two-level models including random intercepts -- -- 5.8.
  • 42- Likelihood -- -- 5.9.
  • 43- Residuals -- -- 5.10.
  • 44- Checking assumptions in mixed models -- -- 5.11.
  • 45- Comparing model likelihoods -- -- 5.12.
  • 46- Application of a two-level linear model -- -- 5.13.
  • 47- Two-level growth models -- -- 5.13.1.
  • 48- A two-level repeated measures model -- -- 5.13.2.
  • 49- A linear growth model -- -- 5.13.3.
  • 50- A quadratic growth model -- -- 5.14.
  • 51- Likelihood -- -- 5.15.
  • 52- Example using linear growth models -- -- 5.16.
  • 53- Exercises using mixed models for continuous/interval scale data -- -- 6.1.
  • 54- Introduction -- -- 6.2.
  • 55- The two-level logistic model -- -- 6.3.
  • 56- General two-level logistic models -- -- 6.4.
  • 57- Intraclass correlation coefficient -- -- 6.5.
  • 58- Likelihood -- -- 6.6.
  • 59- Example using binary data -- -- 6.7.
  • 60- Exercises using mixed models for binary data
  • 61- 7.1.
  • 62- Introduction -- -- 7.2.
  • 63- The two-level ordered logit model -- -- 7.3.
  • 64- Likelihood -- -- 7.4.
  • 65- Example using mixed models for ordered data -- -- 7.5.
  • 66- Exercises using mixed models for ordinal data -- -- 8.1.
  • 67- Introduction -- -- 8.2.
  • 68- The two-level Poisson model -- -- 8.3.
  • 69- Likelihood -- -- 8.4.
  • 70- Example using mixed models for count data -- -- 8.5.
  • 71- Exercises using mixed models for count data -- -- 9.1.
  • 72- Introduction -- -- 9.2.
  • 73- The mixed linear model -- -- 9.3.
  • 74- The mixed binary response model -- -- 9.4.
  • 75- The mixed Poisson model -- -- 9.5.
  • 76- Likelihood -- -- 10.1.
  • 77- Introduction -- -- 10.2.
  • 78- Three-level random intercept models -- -- 10.3.
  • 79- Three-level generalized linear models -- -- 10.4.
  • 80- Linear models -- -- 10.5.
  • 81- Binary response models -- -- 10.6.
  • 82- Likelihood -- -- 10.7.
  • 83- Example using three-level generalized linear models -- -- 10.8.
  • 84- Exercises using three-level generalized linear mixed models -- -- 11.1.
  • 85- Introduction -- -- 11.2.
  • 86- Multivariate two-level generalized linear model -- -- 11.3.
  • 87- Bivariate Poisson model: example -- -- 11.4.
  • 88- Bivariate ordered response model: example -- -- 11.5.
  • 89- Bivariate linear-probit model: example -- -- 11.6.
  • 90- Multivariate two-level generalized linear model likelihood
  • 91- 11.7.
  • 92- Exercises using multivariate generalized linear mixed models -- -- 12.1.
  • 93- Introduction -- -- 12.1.1.
  • 94- Left censoring -- -- 12.1.2.
  • 95- Right censoring -- -- 12.1.3.
  • 96- Time-varying explanatory variables -- -- 12.1.4.
  • 97- Competing risks -- -- 12.2.
  • 98- Duration data in discrete time -- -- 12.2.1.
  • 99- Single-level models for duration data -- -- 12.2.2.
  • 100- Two-level models for duration data -- -- 12.2.3.
  • 101- Three-level models for duration data -- -- 12.3.
  • 102- Renewal data -- -- 12.3.1.
  • 103- Introduction -- -- 12.3.2.
  • 104- Example: renewal models -- -- 12.4.
  • 105- Competing risk data -- -- 12.4.1.
  • 106- Introduction -- -- 12.4.2.
  • 107- Likelihood -- -- 12.4.3.
  • 108- Example: competing risk data -- -- 12.5.
  • 109- Exercises using renewal and competing risks models -- -- 13.1.
  • 110- Introduction -- -- 13.2.
  • 111- Mover-stayer model -- -- 13.3.
  • 112- Likelihood incorporating the mover-stayer model -- -- 13.4.
  • 113- Example 1: stayers within count data -- -- 13.5.
  • 114- Example 2: stayers within binary data -- -- 13.6.
  • 115- Exercises: stayers -- -- 14.1.
  • 116- Introduction to key issues: heterogeneity, state dependence and non-stationarity -- -- 14.2.
  • 117- Example -- -- 14.3.
  • 118- Random effects models -- -- 14.4.
  • 119- Initial conditions problem -- -- 14.5.
  • 120- Initial treatment
  • 121- 14.6.
  • 122- Example: depression data -- -- 14.7.
  • 123- Classical conditional analysis -- -- 14.8.
  • 124- Classical conditional model: example -- -- 14.9.
  • 125- Conditioning on initial response but allowing random effect uol to be dependent on z3 -- -- 14.10.
  • 126- Wooldridge conditional model: example -- -- 14.11.
  • 127- Modelling the initial conditions -- -- 14.12.
  • 128- Same random effect in the initial response and subsequent response models with a common scale parameter -- -- 14.13.
  • 129- Joint analysis with a common random effect: example -- -- 14.14.
  • 130- Same random effect in models of the initial response and subsequent responses but with different scale parameters -- -- 14.15.
  • 131- Joint analysis with a common random effect (different scale parameters): example -- -- 14.16.
  • 132- Different random effects in models of the initial response and subsequent responses -- -- 14.17.
  • 133- Different random effects: example -- -- 14.18.
  • 134- Embedding the Wooldridge approach in joint models for the initial response and subsequent responses -- -- 14.19.
  • 135- Joint model incorporating the Wooldridge approach: example -- -- 14.20.
  • 136- Other link functions -- -- 14.21.
  • 137- Exercises using models incorporating initial conditions/state dependence in binary data
  • 138- 15.1.
  • 139- Introduction -- -- 15.2.
  • 140- Fixed effects treatment of the two-level linear model -- -- 15.3.
  • 141- Dummy variable specification of the fixed effects model -- -- 15.4.
  • 142- Empirical comparison of two-level fixed effects and random effects estimators -- -- 15.5.
  • 143- Implicit fixed effects estimator -- -- 15.6.
  • 144- Random effects models -- -- 15.7.
  • 145- Comparing two-level fixed effects and random effects models -- -- 15.8.
  • 146- Fixed effects treatment of the three-level linear model -- -- 15.9.
  • 147- Exercises comparing fixed effects and random effects -- -- A.1.
  • 148- SabreR installation -- -- A.2.
  • 149- SabreR commands -- -- A.2.1.
  • 150- The arguments of the SabreR object -- -- A.2.2.
  • 151- The anatomy of a SabreR command file -- -- A.3.
  • 152- Quadrature -- -- A.3.1.
  • 153- Standard Gaussian quadrature -- -- A.3.2.
  • 154- Performance of Gaussian quadrature -- -- A.3.3.
  • 155- Adaptive quadrature -- -- A.4.
  • 156- Estimation -- -- A.4.1.
  • 157- Maximizing the log likelihood of random effects models -- -- A.5.
  • 158- Fixed effects linear models -- -- A.6.
  • 159- Endogenous and exogenous variables -- -- B.1.
  • 160- Getting started with R -- -- B.1.1.
  • 161- Preliminaries -- -- B.1.1.1.
  • 162- Working with R in interactive mode -- -- B.1.1.2.
  • 163- Basic functions -- -- B.1.1.3.
  • 164- Getting help
  • 165- B.1.1.4.
  • 166- Stopping R -- -- B.1.2.
  • 167- Creating and manipulating data -- -- B.1.2.1.
  • 168- Vectors and lists -- -- B.1.2.2.
  • 169- Vectors -- -- B.1.2.3.
  • 170- Vector operations -- -- B.1.2.4.
  • 171- Lists -- -- B.1.2.5.
  • 172- Data frames -- -- B.1.3.
  • 173- Session management -- -- B.1.3.1.
  • 174- Managing objects -- -- B.1.3.2.
  • 175- Attaching and detaching objects -- -- B.1.3.3.
  • 176- Serialization -- -- B.1.3.4.
  • 177- R scripts -- -- B.1.3.5.
  • 178- Batch processing -- -- B.1.4.
  • 179- R packages -- -- B.1.4.1.
  • 180- Loading a package into R -- -- B.1.4.2.
  • 181- Installing a package for use in R -- -- B.1.4.3.
  • 182- R and Statistics -- -- B.2.
  • 183- Data preparation for SabreR -- -- B.2.1.
  • 184- Creation of dummy variables -- -- B.2.2.
  • 185- Missing values -- -- B.2.3.
  • 186- Creating lagged response covariate data.

Read “Multivariate generalized linear mixed models using R”:

Read “Multivariate generalized linear mixed models using R” by choosing from the options below.

Search for “Multivariate generalized linear mixed models using R” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Multivariate generalized linear mixed models using R” in Libraries Near You:

Read or borrow “Multivariate generalized linear mixed models using R” from your local library.

Buy “Multivariate generalized linear mixed models using R” online:

Shop for “Multivariate generalized linear mixed models using R” on popular online marketplaces.