"Modular Representation Theory of Finite Groups" - Information and Links:

Modular Representation Theory of Finite Groups

Book's cover
The cover of “Modular Representation Theory of Finite Groups” - Open Library.

"Modular Representation Theory of Finite Groups" is published by Springer London in 2013 - London, it has 178 pages and the language of the book is English.


“Modular Representation Theory of Finite Groups” Metadata:

  • Title: ➤  Modular Representation Theory of Finite Groups
  • Author:
  • Language: English
  • Number of Pages: 178
  • Publisher: Springer London
  • Publish Date:
  • Publish Location: London

“Modular Representation Theory of Finite Groups” Subjects and Themes:

Edition Specifications:

  • Format: [electronic resource] /
  • Pagination: VIII, 178 p.

Edition Identifiers:

AI-generated Review of “Modular Representation Theory of Finite Groups”:


"Modular Representation Theory of Finite Groups" Table Of Contents:

  • 1- Prerequisites in module theory
  • 2- The Cartan{Brauer triangle
  • 3- The Brauer character
  • 4- Green's theory of indecomposable modules
  • 5- Blocks.

"Modular Representation Theory of Finite Groups" Description:

The Open Library:

<p>Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group.</p><p>Modular representation theory of finite groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group.^ Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field.</p><p>Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. </p><p>This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory.^ Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.</p>

Read “Modular Representation Theory of Finite Groups”:

Read “Modular Representation Theory of Finite Groups” by choosing from the options below.

Search for “Modular Representation Theory of Finite Groups” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Modular Representation Theory of Finite Groups” in Libraries Near You:

Read or borrow “Modular Representation Theory of Finite Groups” from your local library.

Buy “Modular Representation Theory of Finite Groups” online:

Shop for “Modular Representation Theory of Finite Groups” on popular online marketplaces.