"Mackay Information Theory Inference Learning Algorithms" - Information and Links:

Mackay Information Theory Inference Learning Algorithms - Info and Reading Options

"Mackay Information Theory Inference Learning Algorithms" and the language of the book is English.


“Mackay Information Theory Inference Learning Algorithms” Metadata:

  • Title: ➤  Mackay Information Theory Inference Learning Algorithms
  • Author:
  • Language: English

“Mackay Information Theory Inference Learning Algorithms” Subjects and Themes:

Edition Identifiers:

  • Internet Archive ID: ➤  MackayInformationTheoryFreeEbookReleasedByAuthor

AI-generated Review of “Mackay Information Theory Inference Learning Algorithms”:


"Mackay Information Theory Inference Learning Algorithms" Description:

The Internet Archive:

This is an outstanding book by Prof. David MacKay (of U. of Cambridge). It is downloadable from author's web page: <a href="http://www.inference.phy.cam.ac.uk/mackay/" rel="nofollow">http://www.inference.phy.cam.ac.uk/mackay/</a>.<br /><br />Please spread the word, and tell your profs to use this free book in their courses.<br /><br />This is an e-book free to read and share electronically as indicated so by the author. However, you are not allowed to print the whole book, instead you should order it from the publisher.<br /><br /><b>Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981<br />You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.<br /></b><br />Contents<br /><br />Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v<br />1 Introduction to Information Theory . . . . . . . . . . . . . 3<br />2 Probability, Entropy, and Inference . . . . . . . . . . . . . . 22<br />3 More about Inference . . . . . . . . . . . . . . . . . . . . . 48<br />I Data Compression . . . . . . . . . . . . . . . . . . . . . . 65<br />4 The Source Coding Theorem . . . . . . . . . . . . . . . . . 67<br />5 Symbol Codes . . . . . . . . . . . . . . . . . . . . . . . . . 91<br />6 Stream Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />7 Codes for Integers . . . . . . . . . . . . . . . . . . . . . . . 132<br /><br />II Noisy-Channel Coding . . . . . . . . . . . . . . . . . . . . 137<br />8 Dependent Random Variables . . . . . . . . . . . . . . . . . 138<br />9 Communication over a Noisy Channel . . . . . . . . . . . . 146<br />10 The Noisy-Channel Coding Theorem . . . . . . . . . . . . . 162<br />11 Error-Correcting Codes and Real Channels . . . . . . . . . 177<br /><br />III Further Topics in Information Theory . . . . . . . . . . . . . 191<br />12 Hash Codes: Codes for Efficient Information Retrieval . . 193<br />13 Binary Codes . . . . . . . . . . . . . . . . . . . . . . . . . 206<br />14 Very Good Linear Codes Exist . . . . . . . . . . . . . . . . 229<br />15 Further Exercises on Information Theory . . . . . . . . . . 233<br />16 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . 241<br />17 Communication over Constrained Noiseless Channels . . . 248<br />18 Crosswords and Codebreaking . . . . . . . . . . . . . . . . 260<br />19 Why have Sex? Information Acquisition and Evolution . . 269<br /><br />IV Probabilities and Inference . . . . . . . . . . . . . . . . . . 281<br />20 An Example Inference Task: Clustering . . . . . . . . . . . 284<br />21 Exact Inference by Complete Enumeration . . . . . . . . . 293<br />22 Maximum Likelihood and Clustering . . . . . . . . . . . . . 300<br />23 Useful Probability Distributions . . . . . . . . . . . . . . . 311<br />24 Exact Marginalization . . . . . . . . . . . . . . . . . . . . . 319<br />25 Exact Marginalization in Trellises . . . . . . . . . . . . . . 324<br />26 Exact Marginalization in Graphs . . . . . . . . . . . . . . . 334<br />27 Laplace’s Method . . . . . . . . . . . . . . . . . . . . . . . 341<br />28 Model Comparison and Occam’s Razor . . . . . . . . . . . 343<br />29 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 357<br />30 Efficient Monte Carlo Methods . . . . . . . . . . . . . . . . 387<br />31 Ising Models . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />32 Exact Monte Carlo Sampling . . . . . . . . . . . . . . . . . 413<br />33 Variational Methods . . . . . . . . . . . . . . . . . . . . . . 422<br />34 Independent Component Analysis and Latent Variable Mod-<br />elling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437<br />35 Random Inference Topics . . . . . . . . . . . . . . . . . . . 445<br />36 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . 451<br />37 Bayesian Inference and Sampling Theory . . . . . . . . . . 457<br /><br />V Neural networks . . . . . . . . . . . . . . . . . . . . . . . . 467<br />38 Introduction to Neural Networks . . . . . . . . . . . . . . . 468<br />39 The Single Neuron as a Classifier . . . . . . . . . . . . . . . 471<br />40 Capacity of a Single Neuron . . . . . . . . . . . . . . . . . . 483<br />41 Learning as Inference . . . . . . . . . . . . . . . . . . . . . 492<br />42 Hopfield Networks . . . . . . . . . . . . . . . . . . . . . . . 505<br />43 Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . 522<br />44 Supervised Learning in Multilayer Networks . . . . . . . . . 527<br />45 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . 535<br />46 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . 549<br /><br />VI Sparse Graph Codes . . . . . . . . . . . . . . . . . . . . . 555<br />47 Low-Density Parity-Check Codes . . . . . . . . . . . . . . 557<br />48 Convolutional Codes and Turbo Codes . . . . . . . . . . . . 574<br />49 Repeat–Accumulate Codes . . . . . . . . . . . . . . . . . . 582<br />50 Digital Fountain Codes . . . . . . . . . . . . . . . . . . . . 589<br /><br />VII Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . 597<br />A Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598<br />B Some Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 601<br />C Some Mathematics . . . . . . . . . . . . . . . . . . . . . . . 605<br />Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613<br />Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620<br /><br />

Read “Mackay Information Theory Inference Learning Algorithms”:

Read “Mackay Information Theory Inference Learning Algorithms” by choosing from the options below.

Available Downloads for “Mackay Information Theory Inference Learning Algorithms”:

"Mackay Information Theory Inference Learning Algorithms" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 380.40 Mbs, and the file-s went public at Fri Oct 25 2013.

Legal and Safety Notes

Copyright Disclaimer and Liability Limitation:

A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.

B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.

C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.

D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.

E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.

Virus Scanning for Your Peace of Mind:

The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:

How to scan a direct download link for viruses:

  • 1- Copy the direct link to the file you want to download (don’t open it yet).
  • (a free online tool) and paste the direct link into the provided field to start the scan.
  • 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
  • 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
  • 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.

Available Downloads

  • Source: Internet Archive
  • Internet Archive Link: Archive.org page
  • All Files are Available: Yes
  • Number of Files: 15
  • Number of Available Files: 15
  • Added Date: 2013-10-25 00:52:00
  • Scanner: Internet Archive HTML5 Uploader 1.4.1
  • PPI (Pixels Per Inch): 300
  • OCR: ABBYY FineReader 9.0

Available Files:

1- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: MackayInformationTheoryFreeEbookReleasedByAuthor_files.xml
  • Direct Link: Click here

2- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: MackayInformationTheoryFreeEbookReleasedByAuthor_meta.sqlite
  • Direct Link: Click here

3- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: MackayInformationTheoryFreeEbookReleasedByAuthor_meta.xml
  • Direct Link: Click here

4- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: MackayInformationTheoryFreeEbookReleasedByAuthor_reviews.xml
  • Direct Link: Click here

5- Item Tile

  • File origin: original
  • File Format: Item Tile
  • File Size: 0.00 Mbs
  • File Name: __ia_thumb.jpg
  • Direct Link: Click here

6- Text PDF

  • File origin: original
  • File Format: Text PDF
  • File Size: 0.01 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author.pdf
  • Direct Link: Click here

7- DjVu

  • File origin: derivative
  • File Format: DjVu
  • File Size: 0.01 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author.djvu
  • Direct Link: Click here

8- EPUB

  • File origin: derivative
  • File Format: EPUB
  • File Size: 0.01 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author.epub
  • Direct Link: Click here

9- Animated GIF

  • File origin: derivative
  • File Format: Animated GIF
  • File Size: 0.00 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author.gif
  • Direct Link: Click here

10- Abbyy GZ

  • File origin: derivative
  • File Format: Abbyy GZ
  • File Size: 0.02 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author_abbyy.gz
  • Direct Link: Click here

11- DjVuTXT

  • File origin: derivative
  • File Format: DjVuTXT
  • File Size: 0.00 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author_djvu.txt
  • Direct Link: Click here

12- Djvu XML

  • File origin: derivative
  • File Format: Djvu XML
  • File Size: 0.02 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author_djvu.xml
  • Direct Link: Click here

13- Single Page Processed JP2 ZIP

  • File origin: derivative
  • File Format: Single Page Processed JP2 ZIP
  • File Size: 0.30 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author_jp2.zip
  • Direct Link: Click here

14- Scandata

  • File origin: derivative
  • File Format: Scandata
  • File Size: 0.00 Mbs
  • File Name: mackay_information_theory_free-ebook_released_by_author_scandata.xml
  • Direct Link: Click here

15- Archive BitTorrent

  • File origin: metadata
  • File Format: Archive BitTorrent
  • File Size: 0.00 Mbs
  • File Name: MackayInformationTheoryFreeEbookReleasedByAuthor_archive.torrent
  • Direct Link: Click here

Search for “Mackay Information Theory Inference Learning Algorithms” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Mackay Information Theory Inference Learning Algorithms” in Libraries Near You:

Read or borrow “Mackay Information Theory Inference Learning Algorithms” from your local library.

Buy “Mackay Information Theory Inference Learning Algorithms” online:

Shop for “Mackay Information Theory Inference Learning Algorithms” on popular online marketplaces.