"Improving Clustering With Metabolic Pathway Data." - Information and Links:

Improving Clustering With Metabolic Pathway Data. - Info and Reading Options

"Improving Clustering With Metabolic Pathway Data." and the language of the book is English.


“Improving Clustering With Metabolic Pathway Data.” Metadata:

  • Title: ➤  Improving Clustering With Metabolic Pathway Data.
  • Authors:
  • Language: English

Edition Identifiers:

  • Internet Archive ID: pubmed-PMC4002909

AI-generated Review of “Improving Clustering With Metabolic Pathway Data.”:


"Improving Clustering With Metabolic Pathway Data." Description:

The Internet Archive:

This article is from <a href="//archive.org/search.php?query=journaltitle%3A%28BMC%20Bioinformatics%29" rel="nofollow">BMC Bioinformatics</a>, <a href="//archive.org/search.php?query=journaltitle%3A%28BMC%20Bioinformatics%29%20AND%20volume%3A%2815%29" rel="nofollow">volume 15</a>.<h2>Abstract</h2>Background: It is a common practice in bioinformatics to validate each group returned by a clustering algorithm through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally related patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this knowledge is used only as a second step, after data are just clustered according to their expression patterns. Thus, it could be very useful to be able to improve the clustering of biological data by incorporating prior knowledge into the cluster formation itself, in order to enhance the biological value of the clusters. Results: A novel training algorithm for clustering is presented, which evaluates the biological internal connections of the data points while the clusters are being formed. Within this training algorithm, the calculation of distances among data points and neurons centroids includes a new term based on information from well-known metabolic pathways. The standard self-organizing map (SOM) training versus the biologically-inspired SOM (bSOM) training were tested with two real data sets of transcripts and metabolites from Solanum lycopersicum and Arabidopsis thaliana species. Classical data mining validation measures were used to evaluate the clustering solutions obtained by both algorithms. Moreover, a new measure that takes into account the biological connectivity of the clusters was applied. The results of bSOM show important improvements in the convergence and performance for the proposed clustering method in comparison to standard SOM training, in particular, from the application point of view. Conclusions: Analyses of the clusters obtained with bSOM indicate that including biological information during training can certainly increase the biological value of the clusters found with the proposed method. It is worth to highlight that this fact has effectively improved the results, which can simplify their further analysis.The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/web-demo/bsom-lite/. The source code and the data sets supporting the results of this article are available at http://sourceforge.net/projects/sourcesinc/files/bsom.

Read “Improving Clustering With Metabolic Pathway Data.”:

Read “Improving Clustering With Metabolic Pathway Data.” by choosing from the options below.

Available Downloads for “Improving Clustering With Metabolic Pathway Data.”:

"Improving Clustering With Metabolic Pathway Data." is available for download from The Internet Archive in "texts" format, the size of the file-s is: 20.71 Mbs, and the file-s went public at Wed Oct 22 2014.

Legal and Safety Notes

Copyright Disclaimer and Liability Limitation:

A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.

B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.

C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.

D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.

E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.

Virus Scanning for Your Peace of Mind:

The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:

How to scan a direct download link for viruses:

  • 1- Copy the direct link to the file you want to download (don’t open it yet).
  • (a free online tool) and paste the direct link into the provided field to start the scan.
  • 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
  • 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
  • 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.

Available Downloads

  • Source: Internet Archive
  • Internet Archive Link: Archive.org page
  • All Files are Available: Yes
  • Number of Files: 14
  • Number of Available Files: 14
  • Added Date: 2014-10-22 19:29:09
  • Scanner: Internet Archive Python library 0.7.2
  • PPI (Pixels Per Inch): 600
  • OCR: ABBYY FineReader 9.0

Available Files:

1- Text PDF

  • File origin: original
  • File Format: Text PDF
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101.pdf
  • Direct Link: Click here

2- JPEG Thumb

  • File origin: original
  • File Format: JPEG Thumb
  • File Size: 0.00 Mbs
  • File Name: __ia_thumb.jpg
  • Direct Link: Click here

3- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4002909_files.xml
  • Direct Link: Click here

4- JSON

  • File origin: original
  • File Format: JSON
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4002909_medline.json
  • Direct Link: Click here

5- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4002909_meta.sqlite
  • Direct Link: Click here

6- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4002909_meta.xml
  • Direct Link: Click here

7- DjVu

  • File origin: derivative
  • File Format: DjVu
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101.djvu
  • Direct Link: Click here

8- Animated GIF

  • File origin: derivative
  • File Format: Animated GIF
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101.gif
  • Direct Link: Click here

9- Abbyy GZ

  • File origin: derivative
  • File Format: Abbyy GZ
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101_abbyy.gz
  • Direct Link: Click here

10- DjVuTXT

  • File origin: derivative
  • File Format: DjVuTXT
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101_djvu.txt
  • Direct Link: Click here

11- Djvu XML

  • File origin: derivative
  • File Format: Djvu XML
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101_djvu.xml
  • Direct Link: Click here

12- Single Page Processed JP2 ZIP

  • File origin: derivative
  • File Format: Single Page Processed JP2 ZIP
  • File Size: 0.02 Mbs
  • File Name: PMC4002909-1471-2105-15-101_jp2.zip
  • Direct Link: Click here

13- Scandata

  • File origin: derivative
  • File Format: Scandata
  • File Size: 0.00 Mbs
  • File Name: PMC4002909-1471-2105-15-101_scandata.xml
  • Direct Link: Click here

14- Archive BitTorrent

  • File origin: metadata
  • File Format: Archive BitTorrent
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4002909_archive.torrent
  • Direct Link: Click here

Search for “Improving Clustering With Metabolic Pathway Data.” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Improving Clustering With Metabolic Pathway Data.” in Libraries Near You:

Read or borrow “Improving Clustering With Metabolic Pathway Data.” from your local library.

Buy “Improving Clustering With Metabolic Pathway Data.” online:

Shop for “Improving Clustering With Metabolic Pathway Data.” on popular online marketplaces.



Find "Improving Clustering With Metabolic Pathway Data." in Wikipdedia