"Functional calculus of pseudo-differential boundary problems" - Information and Links:

Functional calculus of pseudo-differential boundary problems - Info and Reading Options

Book's cover
The cover of “Functional calculus of pseudo-differential boundary problems” - Open Library.

"Functional calculus of pseudo-differential boundary problems" was published by Birkhäuser in 1986 - Boston, the book is classified in bibliography genre, it has 511 pages and the language of the book is English.


“Functional calculus of pseudo-differential boundary problems” Metadata:

  • Title: ➤  Functional calculus of pseudo-differential boundary problems
  • Author:
  • Language: English
  • Number of Pages: 511
  • Publisher: Birkhäuser
  • Publish Date:
  • Publish Location: Boston
  • Genres: bibliography
  • Dewey Decimal Classification: 515.7/242
  • Library of Congress Classification: QA329.7 .G78 1986QA329.7.G78 1986

“Functional calculus of pseudo-differential boundary problems” Subjects and Themes:

Edition Specifications:

  • Number of Pages: vi, 511 p. ; 24 cm.
  • Pagination: vi, 511 p. ;

Edition Identifiers:

AI-generated Review of “Functional calculus of pseudo-differential boundary problems”:


"Functional calculus of pseudo-differential boundary problems" Table Of Contents:

  • 1- 1. Standard Pseudo
  • 2- ifferential Boundary Problems and Their Realizations
  • 3- 2. The Calculus of Parameter
  • 4- ependent Operators
  • 5- 3. Parametrix and Resolvent Constructions
  • 6- 4. Some Applications.

"Functional calculus of pseudo-differential boundary problems" Description:

Harvard Library:

CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub­ sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Read “Functional calculus of pseudo-differential boundary problems”:

Read “Functional calculus of pseudo-differential boundary problems” by choosing from the options below.

Search for “Functional calculus of pseudo-differential boundary problems” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Functional calculus of pseudo-differential boundary problems” in Libraries Near You:

Read or borrow “Functional calculus of pseudo-differential boundary problems” from your local library.

Buy “Functional calculus of pseudo-differential boundary problems” online:

Shop for “Functional calculus of pseudo-differential boundary problems” on popular online marketplaces.


Related Books

Related Ebooks

Source: The Open Library

E-Books

Related Ebooks from the Open Library and The Internet Archive.

1Functional calculus of pseudo-differential boundary problems - Ebook

Please note that the files availability may be limited due to copyright restrictions.
Check the files availability here, with more info and coverage.

“Functional calculus of pseudo-differential boundary problems - Ebook” Metadata:

  • Title: ➤  Functional calculus of pseudo-differential boundary problems - Ebook

Find "Functional Calculus Of Pseudo-differential Boundary Problems" in Wikipdedia