Finite element modeling methods for photonics - Info and Reading Options
By B. M. Azizur Rahman

"Finite element modeling methods for photonics" was published by Artech House in 2013 - Boston, it has 247 pages and the language of the book is English.
“Finite element modeling methods for photonics” Metadata:
- Title: ➤ Finite element modeling methods for photonics
- Author: B. M. Azizur Rahman
- Language: English
- Number of Pages: 247
- Publisher: Artech House
- Publish Date: 2013
- Publish Location: Boston
“Finite element modeling methods for photonics” Subjects and Themes:
- Subjects: ➤ Photonics - Finite element method - Méthode des éléments finis - Photonique - TECHNOLOGY & ENGINEERING - Mechanical
Edition Specifications:
- Pagination: xv, 247 pages
Edition Identifiers:
- The Open Library ID: OL30846494M - OL22939251W
- Online Computer Library Center (OCLC) ID: 837947953 - 870244340
- Library of Congress Control Number (LCCN): 2015430726
- ISBN-13: 9781608075317
- ISBN-10: 1608075311
- All ISBNs: 1608075311 - 9781608075317
AI-generated Review of “Finite element modeling methods for photonics”:
"Finite element modeling methods for photonics" Table Of Contents:
- 1- Machine generated contents note: 1.Introduction
- 2- 1.1.Significance of Numerical Methods
- 3- 1.2.Numerical Methods
- 4- 1.3.Maxwell's Equations and Boundary Conditions
- 5- 1.3.1.Maxwell's Equations
- 6- 1.3.2.Boundary Conditions across Material Interfaces
- 7- 1.3.3.Boundary Conditions: Natural and Forced
- 8- 1.3.4.Boundary Conditions: Truncation of Domains
- 9- 1.4.Basic Assumptions of Numerical Methods and Their Applicability
- 10- 1.4.1.Time Harmonic and Time-Dependent Solutions
- 11- 1.4.2.The Wave Equations
- 12- 1.4.3.Scalar and Vector Nature of the Equations/Solutions
- 13- 1.4.4.Modal Solutions
- 14- 1.4.5.Beam Propagation Methods
- 15- 1.5.Choosing a Modeling Method
- 16- 1.6.Finite-Element-Based Methods
- 17- References
- 18- 2.The Finite-Element Method
- 19- 2.1.Basic Concept of FEM: Essence of FEM-based Formulations
- 20- 2.2.Setting up the FEM
- 21- 2.2.1.The Variational Approach
- 22- 2.2.2.The Galerkin Method
- 23- 2.3.Scalar and Vector FEM Formulations
- 24- 2.3.1.The Scalar Formulation
- 25- 2.3.2.The Vector Formulation
- 26- 2.4.Implementation of FEM
- 27- 2.4.1.Flowchart of Main Steps in FEM
- 28- 2.4.2.Meshing and Shape Functions
- 29- 2.4.3.Shape Functions
- 30- 2.4.4.Examples of Meshing
- 31- 2.5.Formation of Element and Global Matrices
- 32- 2.5.1.Mass and Stiffness Matrix Evaluation for First-order Triangular Elements
- 33- 2.5.2.Mass and Stiffness Matrix Evaluation for Second-order Triangular Elements
- 34- 2.5.3.Assembly of Global Matrices: Bandwidth and Sparsity of Matrices
- 35- 2.5.4.Penalty Function Method for Elimination of Spurious Modes
- 36- 2.6.Solution of the System of Equations
- 37- 2.7.Implementation of Boundary Conditions
- 38- 2.7.1.Natural Boundary Condition and Symmetry: Electric and Magnetic Wall
- 39- 2.7.2.Absorbing Boundary Condition and Perfectly Matched Layer (PML) Boundary Condition
- 40- 2.7.3.Periodic Boundary Conditions (PBC)
- 41- 2.8.Practical Illustrations of FEM Applied to Photonic Structures/devices
- 42- 2.8.1.The Rectangular Waveguide: Si Nanowire
- 43- 2.8.2.Waveguide with a Circular Cross Section: Photonic Crystal Fiber (PCF)
- 44- 2.8.3.Plasmonic Waveguides
- 45- 2.8.4.Photonic Crystal Waveguide and Periodic Boundary Conditions
- 46- 2.9.FEM Analysis of Bent Waveguides
- 47- 2.10.Perturbation Analysis for Loss/gain in Optical Waveguides
- 48- 2.10.1.Perturbation Method with the Scalar FEM
- 49- 2.10.2.Perturbation Method with the Vector FEM
- 50- 2.11.Accuracy and Convergence in FEM
- 51- 2.11.1.Discretisation and Interpolation Errors in FEM Analysis
- 52- 2.11.2.Element Shape Quality and the Stiffness Matrix
- 53- 2.11.3.Error Dependence on Element Size, Order and Arrangement
- 54- 2.11.4.Adaptive Mesh Refinement
- 55- 2.12.Computer Systems and FEM Implementation
- 56- References
- 57- 3.Finite-Element Beam Propagation Methods
- 58- 3.1.Introduction
- 59- 3.2.Setting up BPM Methods
- 60- 3.3.Vector FE-BPM with PML Boundary Conditions
- 61- 3.3.1.Semi-vector and Scalar FE-BPM
- 62- 3.3.2.Wide-angle FE-BPM
- 63- 3.3.3.Paraxial FE-BPM
- 64- 3.3.4.Implementation of the BPM and Stability
- 65- 3.3.5.Practical Illustrations of FE-BPM applied to Photonic Structures/devices
- 66- 3.4.Junction Analysis with FEM: The LSBR Method
- 67- 3.4.1.Analysis of High Index Contrast Bent Waveguide
- 68- 3.5.Bi-directional BPM
- 69- 3.6.Imaginary Axis/distance BPM
- 70- 3.6.1.Analysis of 3D Leaky Waveguide by the Imaginary Axis BPM
- 71- References
- 72- 4.Finite-Element Time Domain Method
- 73- 4.1.Time Domain Numerical Methods
- 74- 4.2.Finite-Element Time Domain (FETD) BPM Method
- 75- 4.2.1.Wide Band and Narrow Band Approximations
- 76- 4.2.2.Implementation of the FETD BPM Method: Implicit and Explicit Schemes
- 77- 4.3.Practical Illustrations of FETD BPM Applied to Photonic Structures/devices
- 78- 4.3.1.Optical Grating
- 79- 4.3.2.90° Sharp Bends
- 80- References
- 81- 5.Incorporating Physical Effects within the Finite-Element Method
- 82- 5.1.Introduction
- 83- 5.2.The Thermal Model
- 84- 5.2.1.Thermal Modeling of a VCSEL
- 85- 5.3.The Stress Model
- 86- 5.3.1.Stress Analysis of a Polarization Maintaining Bow-tie Fiber
- 87- 5.4.The Acoustic Model
- 88- 5.4.1.Acousto-optic Analysis of a Silica Waveguide
- 89- 5.4.2.SBS Analysis of a Silica Nanowire
- 90- 5.5.The Electro-optic Model
- 91- 5.5.1.Analysis of a Lithium Niobate (LN) Electro-optic Modulator
- 92- 5.6.Nonlinear Photonic Devices
- 93- 5.6.1.Analysis of a Strip-loaded Nonlinear Waveguide
- 94- 5.6.2.Analysis of a Nonlinear Directional Coupler
- 95- 5.6.3.Analysis of Second Harmonic Generation in an Optical Waveguide
- 96- References
- 97- 6.FE-based Methods: The Present and Future Directions
- 98- 6.1.Introduction
- 99- 6.2.Salient Features of FE-based Methods
- 100- 6.3.Future Trends and Challenges for FE-based Methods
- 101- Appendix A Scalar FEM with Perturbation
- 102- TE Modes
- 103- TM Modes
- 104- Appendix B Vector FEM with Perturbation
- 105- Appendix C Green's Theorem.
Read “Finite element modeling methods for photonics”:
Read “Finite element modeling methods for photonics” by choosing from the options below.
Search for “Finite element modeling methods for photonics” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Finite element modeling methods for photonics” in Libraries Near You:
Read or borrow “Finite element modeling methods for photonics” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Finite element modeling methods for photonics” at a library near you.
Buy “Finite element modeling methods for photonics” online:
Shop for “Finite element modeling methods for photonics” on popular online marketplaces.
- Ebay: New and used books.