"Finite element modeling methods for photonics" - Information and Links:

Finite element modeling methods for photonics - Info and Reading Options

Book's cover
The cover of “Finite element modeling methods for photonics” - Open Library.

"Finite element modeling methods for photonics" was published by Artech House in 2013 - Boston, it has 247 pages and the language of the book is English.


“Finite element modeling methods for photonics” Metadata:

  • Title: ➤  Finite element modeling methods for photonics
  • Author:
  • Language: English
  • Number of Pages: 247
  • Publisher: Artech House
  • Publish Date:
  • Publish Location: Boston

“Finite element modeling methods for photonics” Subjects and Themes:

Edition Specifications:

  • Pagination: xv, 247 pages

Edition Identifiers:

AI-generated Review of “Finite element modeling methods for photonics”:


"Finite element modeling methods for photonics" Table Of Contents:

  • 1- Machine generated contents note: 1.Introduction
  • 2- 1.1.Significance of Numerical Methods
  • 3- 1.2.Numerical Methods
  • 4- 1.3.Maxwell's Equations and Boundary Conditions
  • 5- 1.3.1.Maxwell's Equations
  • 6- 1.3.2.Boundary Conditions across Material Interfaces
  • 7- 1.3.3.Boundary Conditions: Natural and Forced
  • 8- 1.3.4.Boundary Conditions: Truncation of Domains
  • 9- 1.4.Basic Assumptions of Numerical Methods and Their Applicability
  • 10- 1.4.1.Time Harmonic and Time-Dependent Solutions
  • 11- 1.4.2.The Wave Equations
  • 12- 1.4.3.Scalar and Vector Nature of the Equations/Solutions
  • 13- 1.4.4.Modal Solutions
  • 14- 1.4.5.Beam Propagation Methods
  • 15- 1.5.Choosing a Modeling Method
  • 16- 1.6.Finite-Element-Based Methods
  • 17- References
  • 18- 2.The Finite-Element Method
  • 19- 2.1.Basic Concept of FEM: Essence of FEM-based Formulations
  • 20- 2.2.Setting up the FEM
  • 21- 2.2.1.The Variational Approach
  • 22- 2.2.2.The Galerkin Method
  • 23- 2.3.Scalar and Vector FEM Formulations
  • 24- 2.3.1.The Scalar Formulation
  • 25- 2.3.2.The Vector Formulation
  • 26- 2.4.Implementation of FEM
  • 27- 2.4.1.Flowchart of Main Steps in FEM
  • 28- 2.4.2.Meshing and Shape Functions
  • 29- 2.4.3.Shape Functions
  • 30- 2.4.4.Examples of Meshing
  • 31- 2.5.Formation of Element and Global Matrices
  • 32- 2.5.1.Mass and Stiffness Matrix Evaluation for First-order Triangular Elements
  • 33- 2.5.2.Mass and Stiffness Matrix Evaluation for Second-order Triangular Elements
  • 34- 2.5.3.Assembly of Global Matrices: Bandwidth and Sparsity of Matrices
  • 35- 2.5.4.Penalty Function Method for Elimination of Spurious Modes
  • 36- 2.6.Solution of the System of Equations
  • 37- 2.7.Implementation of Boundary Conditions
  • 38- 2.7.1.Natural Boundary Condition and Symmetry: Electric and Magnetic Wall
  • 39- 2.7.2.Absorbing Boundary Condition and Perfectly Matched Layer (PML) Boundary Condition
  • 40- 2.7.3.Periodic Boundary Conditions (PBC)
  • 41- 2.8.Practical Illustrations of FEM Applied to Photonic Structures/devices
  • 42- 2.8.1.The Rectangular Waveguide: Si Nanowire
  • 43- 2.8.2.Waveguide with a Circular Cross Section: Photonic Crystal Fiber (PCF)
  • 44- 2.8.3.Plasmonic Waveguides
  • 45- 2.8.4.Photonic Crystal Waveguide and Periodic Boundary Conditions
  • 46- 2.9.FEM Analysis of Bent Waveguides
  • 47- 2.10.Perturbation Analysis for Loss/gain in Optical Waveguides
  • 48- 2.10.1.Perturbation Method with the Scalar FEM
  • 49- 2.10.2.Perturbation Method with the Vector FEM
  • 50- 2.11.Accuracy and Convergence in FEM
  • 51- 2.11.1.Discretisation and Interpolation Errors in FEM Analysis
  • 52- 2.11.2.Element Shape Quality and the Stiffness Matrix
  • 53- 2.11.3.Error Dependence on Element Size, Order and Arrangement
  • 54- 2.11.4.Adaptive Mesh Refinement
  • 55- 2.12.Computer Systems and FEM Implementation
  • 56- References
  • 57- 3.Finite-Element Beam Propagation Methods
  • 58- 3.1.Introduction
  • 59- 3.2.Setting up BPM Methods
  • 60- 3.3.Vector FE-BPM with PML Boundary Conditions
  • 61- 3.3.1.Semi-vector and Scalar FE-BPM
  • 62- 3.3.2.Wide-angle FE-BPM
  • 63- 3.3.3.Paraxial FE-BPM
  • 64- 3.3.4.Implementation of the BPM and Stability
  • 65- 3.3.5.Practical Illustrations of FE-BPM applied to Photonic Structures/devices
  • 66- 3.4.Junction Analysis with FEM: The LSBR Method
  • 67- 3.4.1.Analysis of High Index Contrast Bent Waveguide
  • 68- 3.5.Bi-directional BPM
  • 69- 3.6.Imaginary Axis/distance BPM
  • 70- 3.6.1.Analysis of 3D Leaky Waveguide by the Imaginary Axis BPM
  • 71- References
  • 72- 4.Finite-Element Time Domain Method
  • 73- 4.1.Time Domain Numerical Methods
  • 74- 4.2.Finite-Element Time Domain (FETD) BPM Method
  • 75- 4.2.1.Wide Band and Narrow Band Approximations
  • 76- 4.2.2.Implementation of the FETD BPM Method: Implicit and Explicit Schemes
  • 77- 4.3.Practical Illustrations of FETD BPM Applied to Photonic Structures/devices
  • 78- 4.3.1.Optical Grating
  • 79- 4.3.2.90° Sharp Bends
  • 80- References
  • 81- 5.Incorporating Physical Effects within the Finite-Element Method
  • 82- 5.1.Introduction
  • 83- 5.2.The Thermal Model
  • 84- 5.2.1.Thermal Modeling of a VCSEL
  • 85- 5.3.The Stress Model
  • 86- 5.3.1.Stress Analysis of a Polarization Maintaining Bow-tie Fiber
  • 87- 5.4.The Acoustic Model
  • 88- 5.4.1.Acousto-optic Analysis of a Silica Waveguide
  • 89- 5.4.2.SBS Analysis of a Silica Nanowire
  • 90- 5.5.The Electro-optic Model
  • 91- 5.5.1.Analysis of a Lithium Niobate (LN) Electro-optic Modulator
  • 92- 5.6.Nonlinear Photonic Devices
  • 93- 5.6.1.Analysis of a Strip-loaded Nonlinear Waveguide
  • 94- 5.6.2.Analysis of a Nonlinear Directional Coupler
  • 95- 5.6.3.Analysis of Second Harmonic Generation in an Optical Waveguide
  • 96- References
  • 97- 6.FE-based Methods: The Present and Future Directions
  • 98- 6.1.Introduction
  • 99- 6.2.Salient Features of FE-based Methods
  • 100- 6.3.Future Trends and Challenges for FE-based Methods
  • 101- Appendix A Scalar FEM with Perturbation
  • 102- TE Modes
  • 103- TM Modes
  • 104- Appendix B Vector FEM with Perturbation
  • 105- Appendix C Green's Theorem.

Read “Finite element modeling methods for photonics”:

Read “Finite element modeling methods for photonics” by choosing from the options below.

Search for “Finite element modeling methods for photonics” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Finite element modeling methods for photonics” in Libraries Near You:

Read or borrow “Finite element modeling methods for photonics” from your local library.

Buy “Finite element modeling methods for photonics” online:

Shop for “Finite element modeling methods for photonics” on popular online marketplaces.