"Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine" - Information and Links:

Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine - Info and Reading Options

"Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine" and the language of the book is per.


“Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” Metadata:

  • Title: ➤  Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine
  • Language: per

“Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” Subjects and Themes:

Edition Identifiers:

  • Internet Archive ID: ➤  jam-volume-11-issue-2-pages-371-383

AI-generated Review of “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine”:


"Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine" Description:

The Internet Archive:

<strong>Introduction</strong><br />Extra Virgin Olive Oil (EVOO) is one of the most common and popular edible oils which is an important part of the Mediterranean diet. It is a rich source of sterol, phenol compounds and vitamins A and E. EVOO has useful effects on human body and significant reduction of cardiovascular diseases due to these benefits, EVOO is expensive so unfortunately adulteration in EVOO by mixing it with other cheap and low cost and low value oils such as canola, sunflower, palm and etc. is very common. Adulteration leads to health and financial losses and sometimes cause serious illness. Olive oil has various quality levels which depend on different factors such as olive cultivar, storage, oil extracting process etc.<br /><strong>Materials and Methods</strong><br />There are numerous food quality evaluation and adulteration detection approaches which include destructive and non-destructive methods. Control sample (EVOO) was applied from "DANZEH food industry", Lowshan, Gilan Province. For ensuring that control sample is extra virgin, a sample was tested in "Rahpooyan e danesh koolak Lab." Tehran, Iran; according to "Institute of standards and industrial research of Iran" ISIRI number: 4091 and INSO 13126-2. Eight semi-conductor gas sensors "FIS, MQ3, MQ3, MQ4, MQ8, MQ135, MQ136, TGS136, TGS813 AND TGS822" applied in used olfaction machine. In this study there were 6 treatments: 1- Pure EVOO, 2- EVOO with 5% adulteration, 3- EVOO with 10% adulteration, 4- EVOO with 20% adulteration, 5- EVOO with 35% adulteration and 6- EVOO with 50% adulteration. Adulteration created with ordinary frying oil (including sunflower, canola, and maize oils). Each treatment prepared in seven samples and each sample test was repeated seven times. In this study, olfaction machine, a non-destructive, simple and user friendly System applied. As mentioned, the olfaction machine includes eight different sensors, so each test has eight graphs. Four features (1- Sensor output (mV) in start of odor pulse (refer to fig. 3) 2- Sensor output at the end of odor pulse 3- Average of sensor output during odor pulse and 4- Difference of sensor output at the end and start of start of odor pulse); So 32 features extracted and analyzed and finally effective sensors reported.<br /><strong>Results and Discussion</strong><br />Histogram and box plot of raw data showed that the data are not normal and need some preprocessing operations. Preprocessing facilitates data analyzing and classifying extracted features. After preprocessing, the standard data, divided into two classes: train data (70%) and test data (30%). Data classified with 4 different classifier models which include: K-nearest neighbors, support vector machine, artificial neural network and Ada-boost. Results showed that KNN method, with 89.89% and SVM with 86.52% classified with higher accuracy. Similarly, the confusion matrix showed the reasonable results of classifying operation. Also, three effective sensors in classifying determined TGS2620, MQ5 and MQ4 respectively, and on the other side, sensors such as MQ3 and MQ8 have the minimum effect on classifying so it is possible to remove these sensors from the sensor array without effective impress on results. This may cause decrease in the olfaction machine price and reduce analyzing time.<br /><strong>Conclusion</strong><br />Due to increasing adulteration in foods, especially in olive oil and its significant effects on people's health and financial losses, a simple, cheap and non-destructive quality evaluation extended. Results showed that the olfaction machine with metal oxide semiconductor (especially including TGS 2620, MQ5 and MQ4 sensors) can use for classification and adulteration detection of extra virgin olive oil. Evaluation of this system's output leads to higher classification accuracy by using KNN and SVM method for olive oil classification and also fraud detection (5% adulteration).

Read “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine”:

Read “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” by choosing from the options below.

Available Downloads for “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine”:

"Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 9.78 Mbs, and the file-s went public at Tue May 09 2023.

Legal and Safety Notes

Copyright Disclaimer and Liability Limitation:

A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.

B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.

C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.

D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.

E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.

Virus Scanning for Your Peace of Mind:

The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:

How to scan a direct download link for viruses:

  • 1- Copy the direct link to the file you want to download (don’t open it yet).
  • (a free online tool) and paste the direct link into the provided field to start the scan.
  • 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
  • 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
  • 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.

Available Downloads

  • Source: Internet Archive
  • Internet Archive Link: Archive.org page
  • All Files are Available: Yes
  • Number of Files: 15
  • Number of Available Files: 15
  • Added Date: 2023-05-09 08:16:31
  • Scanner: Internet Archive HTML5 Uploader 1.7.0
  • PPI (Pixels Per Inch): 300
  • OCR: tesseract 5.3.0-3-g9920
  • OCR Detected Language: fa

Available Files:

1- Text PDF

  • File origin: original
  • File Format: Text PDF
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383.pdf
  • Direct Link: Click here

2- Item Tile

  • File origin: original
  • File Format: Item Tile
  • File Size: 0.00 Mbs
  • File Name: __ia_thumb.jpg
  • Direct Link: Click here

3- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: jam-volume-11-issue-2-pages-371-383_files.xml
  • Direct Link: Click here

4- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: jam-volume-11-issue-2-pages-371-383_meta.sqlite
  • Direct Link: Click here

5- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: jam-volume-11-issue-2-pages-371-383_meta.xml
  • Direct Link: Click here

6- chOCR

  • File origin: derivative
  • File Format: chOCR
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_chocr.html.gz
  • Direct Link: Click here

7- DjVuTXT

  • File origin: derivative
  • File Format: DjVuTXT
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_djvu.txt
  • Direct Link: Click here

8- Djvu XML

  • File origin: derivative
  • File Format: Djvu XML
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_djvu.xml
  • Direct Link: Click here

9- hOCR

  • File origin: derivative
  • File Format: hOCR
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_hocr.html
  • Direct Link: Click here

10- OCR Page Index

  • File origin: derivative
  • File Format: OCR Page Index
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_hocr_pageindex.json.gz
  • Direct Link: Click here

11- OCR Search Text

  • File origin: derivative
  • File Format: OCR Search Text
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_hocr_searchtext.txt.gz
  • Direct Link: Click here

12- Single Page Processed JP2 ZIP

  • File origin: derivative
  • File Format: Single Page Processed JP2 ZIP
  • File Size: 0.01 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_jp2.zip
  • Direct Link: Click here

13- Page Numbers JSON

  • File origin: derivative
  • File Format: Page Numbers JSON
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_page_numbers.json
  • Direct Link: Click here

14- Scandata

  • File origin: derivative
  • File Format: Scandata
  • File Size: 0.00 Mbs
  • File Name: JAM_Volume 11_Issue 2_Pages 371-383_scandata.xml
  • Direct Link: Click here

15- Archive BitTorrent

  • File origin: metadata
  • File Format: Archive BitTorrent
  • File Size: 0.00 Mbs
  • File Name: jam-volume-11-issue-2-pages-371-383_archive.torrent
  • Direct Link: Click here

Search for “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” in Libraries Near You:

Read or borrow “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” from your local library.

Buy “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” online:

Shop for “Estimation Of The Best Classification Algorithm And Fraud Detection Of Olive Oil By Olfaction Machine” on popular online marketplaces.