Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks - Info and Reading Options
By Qian-KunSun, YueZhang, Zi-RuiHao, Hong-WeiWang, Gong-TaoFan, Hang-HuaXu, Long-XiangLiu, ShengJin, Yu-XuanYang, Kai-JieChen and Zhen-WeiWang.Enhancing Reliability in Photonuclear Cross-Section Fitting with Bayesian Neural Networks.中国科学院科技论文预发布平台.[DOI:10.12074/202411.00202]
“Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” Metadata:
- Title: ➤ Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks
- Authors: ➤ Qian-KunSunYueZhangZi-RuiHaoHong-WeiWangGong-TaoFanHang-HuaXuLong-XiangLiuShengJinYu-XuanYangKai-JieChenZhen-WeiWang.Enhancing Reliability in Photonuclear Cross-Section Fitting with Bayesian Neural Networks.中国科学院科技论文预发布平台.[DOI:10.12074/202411.00202]
“Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” Subjects and Themes:
- Subjects: ➤ ChinaXiv - 物理学 - 核物理学 - Photoneutron reaction - Bayesian neural network - Machine learning - Gamma source - SLEGS
Edition Identifiers:
- Internet Archive ID: ChinaXiv-202411.00202V1
AI-generated Review of “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks”:
"Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks" Description:
The Internet Archive:
<div class="hd"> <h1> Enhancing Reliability in Photonuclear Cross-Section Fitting with Bayesian Neural Networks </h1> <div class="flex" style="border:0px;padding-bottom:0px;"> </div> <div class="bd" style="border-bottom:1px solid #ced6e0;"> <ul style="margin-top:0px;"> <li> <b> 作者: </b> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Qian-KunSun" style="color:#3060cc;" rel="ugc nofollow"> Qian-KunSun </a> <sup style="margin-left:0px;"> 1,2 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=YueZhang" style="color:#3060cc;" rel="ugc nofollow"> YueZhang </a> <sup style="margin-left:0px;"> 3 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Zi-RuiHao" style="color:#3060cc;" rel="ugc nofollow"> Zi-RuiHao </a> <sup style="margin-left:0px;"> 3 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Hong-WeiWang" style="color:#3060cc;" rel="ugc nofollow"> Hong-WeiWang </a> <sup style="margin-left:0px;"> 1,2,3 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Gong-TaoFan" style="color:#3060cc;" rel="ugc nofollow"> Gong-TaoFan </a> <sup style="margin-left:0px;"> 1,2,3 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Hang-HuaXu" style="color:#3060cc;" rel="ugc nofollow"> Hang-HuaXu </a> <sup style="margin-left:0px;"> 3 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Long-XiangLiu" style="color:#3060cc;" rel="ugc nofollow"> Long-XiangLiu </a> <sup style="margin-left:0px;"> 3 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=ShengJin" style="color:#3060cc;" rel="ugc nofollow"> ShengJin </a> <sup style="margin-left:0px;"> 1,2 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Yu-XuanYang" style="color:#3060cc;" rel="ugc nofollow"> Yu-XuanYang </a> <sup style="margin-left:0px;"> 1,4 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Kai-JieChen" style="color:#3060cc;" rel="ugc nofollow"> Kai-JieChen </a> <sup style="margin-left:0px;"> 1,5 </sup> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Zhen-WeiWang" style="color:#3060cc;" rel="ugc nofollow"> Zhen-WeiWang </a> <sup style="margin-left:0px;"> 1,2 </sup> </li> <li> <b> 作者单位: </b> <div style="margin-left:70px;margin-top:-26px;"> <div> 1. <a href="https://chinaxiv.org/user/search.htm?field=affication&value=Shanghai%20Institute%20of%20Applied%20Physics,%20Chinese%20Academy%20of%20Sciences,%20Shanghai%20201800,%20China" style="color:#3060cc;" rel="ugc nofollow"> Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China </a> </div> <div> 2. <a href="https://chinaxiv.org/user/search.htm?field=affication&value=University%20of%20Chinese%20Academy%20of%20Sciences,%20Beijing%20100049,%20China" style="color:#3060cc;" rel="ugc nofollow"> University of Chinese Academy of Sciences, Beijing 100049, China </a> </div> <div> 3. <a href="https://chinaxiv.org/user/search.htm?field=affication&value=Shanghai%20Advanced%20Research%20Institute,%20Chinese%20Academy%20of%20Sciences,%20Shanghai%20201210,%20China" style="color:#3060cc;" rel="ugc nofollow"> Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China </a> </div> <div> 4. <a href="https://chinaxiv.org/user/search.htm?field=affication&value=School%20of%20Physics%20and%20Microelectronics,%20Zhengzhou%20university,%20Zhengzhou%20450001,%20China" style="color:#3060cc;" rel="ugc nofollow"> School of Physics and Microelectronics, Zhengzhou university, Zhengzhou 450001, China </a> </div> <div> 5. <a href="https://chinaxiv.org/user/search.htm?field=affication&value=School%20of%20Physical%20Science%20and%20Technology,%20ShanghaiTech%20University,%20Shanghai%20201210,%20China" style="color:#3060cc;" rel="ugc nofollow"> School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China </a> </div> </div> </li> <li> <b> 通讯作者: </b> <a href="https://chinaxiv.org/user/search.htm?field=author&value=Qian-KunSun" style="color:#bb3536;" rel="ugc nofollow"> Qian-KunSun </a> Email:[email protected] <a href="https://chinaxiv.org/user/search.htm?field=author&value=YueZhang" style="color:#bb3536;" rel="ugc nofollow"> YueZhang </a> Email:[email protected] <a href="https://chinaxiv.org/user/search.htm?field=author&value=Hong-WeiWang" style="color:#bb3536;" rel="ugc nofollow"> Hong-WeiWang </a> Email:[email protected] </li> <li> <b> 提交时间: </b> 2024-11-19 12:05:40 </li> </ul> </div> <div class="bd" style="margin-top:15px;"> <div style="line-height:24px;color:#333;"> <b> 摘要: </b> This study investigates photonuclear reaction $(\gamma,n)$ cross-sections using Bayesian neural network (BNN) analysis. After determining the optimal network architecture, which features two hidden layers, each with 50 hidden nodes, training was conducted for 30,000 iterations to ensure comprehensive data capture. By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope $^{159}$Tb, as well as the relative errors unrelated to the cross-section, we confirmed that the network effectively captured the data features without overfitting. Comparison with the TENDL-2021 Database demonstrated the BNN’s reliability in fitting photonuclear cross-sections with lower average errors. The predictions for nuclei with single and double giant dipole resonance peak cross-sections, the accurate determination of the photoneutron reaction threshold in the low-energy region, and the precise description of trends in the high-energy cross-sections further demonstrate the network’s generalization ability on the validation set. This can be attributed to the consistency of the training data. By using consistent training sets from different laboratories, Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data, thereby estimating the potential differences between other laboratories’ existing data and their own measurement results. Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data. </div> <div class="brdge"> <span class="spankwd"> <a href="https://chinaxiv.org/user/search.htm?field=keywords&value=Photoneutron%20reaction" rel="ugc nofollow"> Photoneutron reaction </a> </span> <span class="spankwd"> <a href="https://chinaxiv.org/user/search.htm?field=keywords&value=%20Bayesian%20neural%20network" rel="ugc nofollow"> Bayesian neural network </a> </span> <span class="spankwd"> <a href="https://chinaxiv.org/user/search.htm?field=keywords&value=%20Machine%20learning" rel="ugc nofollow"> Machine learning </a> </span> <span class="spankwd"> <a href="https://chinaxiv.org/user/search.htm?field=keywords&value=%20Gamma%20source" rel="ugc nofollow"> Gamma source </a> </span> <span class="spankwd"> <a href="https://chinaxiv.org/user/search.htm?field=keywords&value=%20SLEGS" rel="ugc nofollow"> SLEGS </a> </span> </div> <ul> <li> <b> 来自: </b> 孙乾坤 </li> <li> <b> 分类: </b> <a href="https://chinaxiv.org/user/search.htm?field=domain&value=2" rel="ugc nofollow"> 物理学 </a> >> <a href="https://chinaxiv.org/user/search.htm?field=subject&value=40" rel="ugc nofollow"> 核物理学 </a> </li> <li> <b> 说明: </b> <span> 已被Nuclear Science and Techniques期刊接收 </span> </li> <li> <b> 投稿状态: </b> <a rel="ugc nofollow"> 已被期刊接收 </a> </li> <li> <b> 引用: </b> <a href="https://chinaxiv.org/abs/202411.00202" rel="ugc nofollow"> <font color="#0000FF"> ChinaXiv:202411.00202 </font> </a> (或此版本 <a href="https://chinaxiv.org/abs/202411.00202v1" rel="ugc nofollow"> <font color="#0000FF"> ChinaXiv:202411.00202V1 </font> </a> ) <br /> <a href="http://dx.doi.org/10.12074/202411.00202" style="color:#0000FF;margin-left:45px;" rel="ugc nofollow"> <font color="#0000FF"> DOI:10.12074/202411.00202 </font> </a> <br /> <a href="https://www.cstr.cn/CSTR:32003.36.ChinaXiv.202411.00202" style="margin-left:45px;" rel="ugc nofollow"> <font color="#0000FF"> CSTR:32003.36.ChinaXiv.202411.00202 </font> </a> </li> <li> <b> 科创链TXID: </b> <a href="https://sciencechain.ac.cn/realTimeNetwork/transaction/197016ef-a392-4705-b927-8824ed0ffe4c" rel="ugc nofollow"> <font color="#0000FF"> 197016ef-a392-4705-b927-8824ed0ffe4c </font> </a> </li> <li> <b> 推荐引用方式: </b> <span> Qian-KunSun,YueZhang,Zi-RuiHao,Hong-WeiWang,Gong-TaoFan,Hang-HuaXu,Long-XiangLiu,ShengJin,Yu-XuanYang,Kai-JieChen,Zhen-WeiWang.Enhancing Reliability in Photonuclear Cross-Section Fitting with Bayesian Neural Networks.中国科学院科技论文预发布平台.[DOI:10.12074/202411.00202] </span> </li> </ul> </div> <div class="ft"> <h4> <span> 版本历史 </span> </h4> <table style="font-size:14px;"> <tr> <td> <b> [V1] </b> </td> <td> 2024-11-19 12:05:40 </td> <td> ChinaXiv:202411.00202V1 </td> <td> <a class="btn" href="https://chinaxiv.org/user/download.htm?uuid=072f2abe-6c7f-411b-8f31-349b029a85c3" rel="ugc nofollow"> 下载全文 </a> </td> </tr> </table> </div> </div>
Read “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks”:
Read “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” by choosing from the options below.
Available Downloads for “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks”:
"Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 12.24 Mbs, and the file-s went public at Sun Apr 20 2025.
Legal and Safety Notes
Copyright Disclaimer and Liability Limitation:
A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.
B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.
C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.
D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.
E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.
Virus Scanning for Your Peace of Mind:
The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:
How to scan a direct download link for viruses:
- 1- Copy the direct link to the file you want to download (don’t open it yet). (a free online tool) and paste the direct link into the provided field to start the scan.
- 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
- 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
- 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.
Available Downloads
- Source: Internet Archive
- Internet Archive Link: Archive.org page
- All Files are Available: Yes
- Number of Files: 15
- Number of Available Files: 15
- Added Date: 2025-04-20 10:25:27
- Scanner: ChinaXivXiv v0.2.0
- PPI (Pixels Per Inch): 300
- OCR: tesseract 5.3.0-6-g76ae
- OCR Detected Language: en
Available Files:
1- Text PDF
- File origin: original
- File Format: Text PDF
- File Size: 0.00 Mbs
- File Name: 202411.00202v1.pdf
- Direct Link: Click here
2- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: ChinaXiv-202411.00202V1_files.xml
- Direct Link: Click here
3- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: ChinaXiv-202411.00202V1_meta.sqlite
- Direct Link: Click here
4- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: ChinaXiv-202411.00202V1_meta.xml
- Direct Link: Click here
5- Item Tile
- File origin: original
- File Format: Item Tile
- File Size: 0.00 Mbs
- File Name: __ia_thumb.jpg
- Direct Link: Click here
6- chOCR
- File origin: derivative
- File Format: chOCR
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_chocr.html.gz
- Direct Link: Click here
7- DjVuTXT
- File origin: derivative
- File Format: DjVuTXT
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_djvu.txt
- Direct Link: Click here
8- Djvu XML
- File origin: derivative
- File Format: Djvu XML
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_djvu.xml
- Direct Link: Click here
9- hOCR
- File origin: derivative
- File Format: hOCR
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_hocr.html
- Direct Link: Click here
10- OCR Page Index
- File origin: derivative
- File Format: OCR Page Index
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_hocr_pageindex.json.gz
- Direct Link: Click here
11- OCR Search Text
- File origin: derivative
- File Format: OCR Search Text
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_hocr_searchtext.txt.gz
- Direct Link: Click here
12- Single Page Processed JP2 ZIP
- File origin: derivative
- File Format: Single Page Processed JP2 ZIP
- File Size: 0.01 Mbs
- File Name: 202411.00202v1_jp2.zip
- Direct Link: Click here
13- Page Numbers JSON
- File origin: derivative
- File Format: Page Numbers JSON
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_page_numbers.json
- Direct Link: Click here
14- Scandata
- File origin: derivative
- File Format: Scandata
- File Size: 0.00 Mbs
- File Name: 202411.00202v1_scandata.xml
- Direct Link: Click here
15- Archive BitTorrent
- File origin: metadata
- File Format: Archive BitTorrent
- File Size: 0.00 Mbs
- File Name: ChinaXiv-202411.00202V1_archive.torrent
- Direct Link: Click here
Search for “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” in Libraries Near You:
Read or borrow “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” from your local library.
Buy “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” online:
Shop for “Enhancing Reliability In Photonuclear Cross-Section Fitting With Bayesian Neural Networks” on popular online marketplaces.
- Ebay: New and used books.