DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition - Info and Reading Options
By Defense Technical Information Center
"DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition" and the language of the book is English.
“DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” Metadata:
- Title: ➤ DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition
- Author: ➤ Defense Technical Information Center
- Language: English
Edition Identifiers:
- Internet Archive ID: DTIC_ADA377976
AI-generated Review of “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition”:
"DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition" Description:
The Internet Archive:
Infrared spectroscopy is an important technique for measuring airborne chemicals, for pollution monitoring and to warn of toxic compound releases. Infrared spectroscopy provides both detection and identification of airborne components. Computer-assisted classification tools, including pattern recognition and artificial neural network techniques, have been applied to a collection of infrared spectra of organophosphorus compounds, and these have successfully discriminated commercial pesticide compounds from military nerve agents, precursors, and hydrolysis products. Infrared spectra for previous tests came from a commercial infrared library, with permission, from military laboratories, and from defense contractors. In order to further test such classification tools, additional infrared spectra from the NIST gas-phase infrared library were added to the data set. These additional spectra probed the tendency of the trained classifiers to misidentify unrelated spectra into the trained classes. Infrared spectra used in this effort were gathered from a variety of sources. Different instrument operators collected them at a number of locations, in a variety of spectral data collection designs, and they were delivered in a variety of digital formats. The spectra were treated mathematically to remove artifacts from their collection. Preprocessing techniques used included Fisher weighting and principal component analysis. Classifications were made using the k-nearest neighbor classifier, feed forward neural networks, trained with a variety of techniques, and radial basis function networks. The results from these classification techniques will be reported and compared.
Read “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition”:
Read “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” by choosing from the options below.
Available Downloads for “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition”:
"DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 12.27 Mbs, and the file-s went public at Sat Apr 28 2018.
Legal and Safety Notes
Copyright Disclaimer and Liability Limitation:
A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.
B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.
C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.
D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.
E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.
Virus Scanning for Your Peace of Mind:
The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:
How to scan a direct download link for viruses:
- 1- Copy the direct link to the file you want to download (don’t open it yet). (a free online tool) and paste the direct link into the provided field to start the scan.
- 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
- 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
- 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.
Available Downloads
- Source: Internet Archive
- Internet Archive Link: Archive.org page
- All Files are Available: Yes
- Number of Files: 16
- Number of Available Files: 16
- Added Date: 2018-04-28 13:56:53
- PPI (Pixels Per Inch): 300
Available Files:
1- Text PDF
- File origin: original
- File Format: Text PDF
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976.pdf
- Direct Link: Click here
2- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_files.xml
- Direct Link: Click here
3- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_meta.sqlite
- Direct Link: Click here
4- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_meta.xml
- Direct Link: Click here
5- JPEG Thumb
- File origin: original
- File Format: JPEG Thumb
- File Size: 0.00 Mbs
- File Name: __ia_thumb.jpg
- Direct Link: Click here
6- Abbyy GZ
- File origin: derivative
- File Format: Abbyy GZ
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_abbyy.gz
- Direct Link: Click here
7- chOCR
- File origin: derivative
- File Format: chOCR
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_chocr.html.gz
- Direct Link: Click here
8- DjVuTXT
- File origin: derivative
- File Format: DjVuTXT
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_djvu.txt
- Direct Link: Click here
9- Djvu XML
- File origin: derivative
- File Format: Djvu XML
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_djvu.xml
- Direct Link: Click here
10- hOCR
- File origin: derivative
- File Format: hOCR
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_hocr.html
- Direct Link: Click here
11- OCR Page Index
- File origin: derivative
- File Format: OCR Page Index
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_hocr_pageindex.json.gz
- Direct Link: Click here
12- OCR Search Text
- File origin: derivative
- File Format: OCR Search Text
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_hocr_searchtext.txt.gz
- Direct Link: Click here
13- Single Page Processed JP2 ZIP
- File origin: derivative
- File Format: Single Page Processed JP2 ZIP
- File Size: 0.01 Mbs
- File Name: DTIC_ADA377976_jp2.zip
- Direct Link: Click here
14- Page Numbers JSON
- File origin: derivative
- File Format: Page Numbers JSON
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_page_numbers.json
- Direct Link: Click here
15- Scandata
- File origin: derivative
- File Format: Scandata
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_scandata.xml
- Direct Link: Click here
16- Archive BitTorrent
- File origin: metadata
- File Format: Archive BitTorrent
- File Size: 0.00 Mbs
- File Name: DTIC_ADA377976_archive.torrent
- Direct Link: Click here
Search for “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” in Libraries Near You:
Read or borrow “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” from your local library.
Buy “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” online:
Shop for “DTIC ADA377976: Infrared Spectral Classification With Artificial Neural Networks And Classical Pattern Recognition” on popular online marketplaces.
- Ebay: New and used books.