Downloads & Free Reading Options - Results

Modified Interior Distance Functions (theory And Methods) by Roman A. Polyak

Read "Modified Interior Distance Functions (theory And Methods)" by Roman A. Polyak through these free online access and download options.

Search for Downloads

Search by Title or Author

Books Results

Source: The Internet Archive

The internet Archive Search Results

Available books for downloads and borrow from The internet Archive

1Modified Interior Distance Functions (Theory And Methods)

By

In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The approximation for the primal minimizer one finds by Newton Method followed by the Lagrange multipliers update. Due to the MCM convergence, when both the center and the barrier parameter are fixed, the condition of the MDF Hessism and the neighborhood of the primal ninimizer where Newton method is 'well' defined remains stable. It contributes to both the complexity and the numerical stability of the NMCM.

“Modified Interior Distance Functions (Theory And Methods)” Metadata:

  • Title: ➤  Modified Interior Distance Functions (Theory And Methods)
  • Author:
  • Language: English

“Modified Interior Distance Functions (Theory And Methods)” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 12.42 Mbs, the file-s for this book were downloaded 429 times, the file-s went public at Mon May 23 2011.

Available formats:
Abbyy GZ - Animated GIF - Archive BitTorrent - DjVu - DjVuTXT - Djvu XML - Item Tile - Metadata - Scandata - Single Page Processed JP2 ZIP - Text PDF -

Related Links:

Online Marketplaces

Find Modified Interior Distance Functions (Theory And Methods) at online marketplaces:


2NASA Technical Reports Server (NTRS) 19970037799: Modified Interior Distance Functions (Theory And Methods)

By

In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The approximation for the primal minimizer one finds by Newton Method followed by the Lagrange multipliers update. Due to the MCM convergence, when both the center and the barrier parameter are fixed, the condition of the MDF Hessism and the neighborhood of the primal ninimizer where Newton method is 'well' defined remains stable. It contributes to both the complexity and the numerical stability of the NMCM.

“NASA Technical Reports Server (NTRS) 19970037799: Modified Interior Distance Functions (Theory And Methods)” Metadata:

  • Title: ➤  NASA Technical Reports Server (NTRS) 19970037799: Modified Interior Distance Functions (Theory And Methods)
  • Author: ➤  
  • Language: English

“NASA Technical Reports Server (NTRS) 19970037799: Modified Interior Distance Functions (Theory And Methods)” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 57.12 Mbs, the file-s for this book were downloaded 66 times, the file-s went public at Sun Oct 09 2016.

Available formats:
Abbyy GZ - Animated GIF - Archive BitTorrent - DjVuTXT - Djvu XML - Item Tile - Metadata - Scandata - Single Page Processed JP2 ZIP - Text PDF -

Related Links:

Online Marketplaces

Find NASA Technical Reports Server (NTRS) 19970037799: Modified Interior Distance Functions (Theory And Methods) at online marketplaces:


Buy “Modified Interior Distance Functions (theory And Methods)” online:

Shop for “Modified Interior Distance Functions (theory And Methods)” on popular online marketplaces.