Downloads & Free Reading Options - Results
Introduction To Computability by Frederick C. Hennie
Read "Introduction To Computability" by Frederick C. Hennie through these free online access and download options.
Books Results
Source: The Internet Archive
The internet Archive Search Results
Available books for downloads and borrow from The internet Archive
1Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach
By Richard Zach, University of Calgary
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach” Metadata:
- Title: ➤ Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach
- Author: ➤ Richard Zach, University of Calgary
- Language: English
Edition Identifiers:
- Internet Archive ID: ➤ incompleteness-and-computability-an-open-introduction-to-godels-theorems-richard-zach
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 101.69 Mbs, the file-s for this book were downloaded 16 times, the file-s went public at Fri Jun 13 2025.
Available formats:
Archive BitTorrent - DjVuTXT - Djvu XML - Item Tile - Metadata - OCR Page Index - OCR Search Text - Page Numbers JSON - Scandata - Single Page Processed JP2 ZIP - Text PDF - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
2Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions
By Hermes, Hans
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions” Metadata:
- Title: ➤ Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions
- Author: Hermes, Hans
- Language: eng,ger
“Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions” Subjects and Themes:
- Subjects: Algorithms - Computable functions - Gödel's theorem - Recursive functions
Edition Identifiers:
- Internet Archive ID: enumerabilitydec0000herm
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 644.14 Mbs, the file-s for this book were downloaded 66 times, the file-s went public at Fri Jun 21 2019.
Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
3Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions
By Hermes, Hans
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions” Metadata:
- Title: ➤ Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions
- Author: Hermes, Hans
- Language: eng,ger
“Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions” Subjects and Themes:
- Subjects: Algorithms - Computable functions - Gödel's theorem - Recursive functions
Edition Identifiers:
- Internet Archive ID: enumerabilitydec0000herm_u9p7
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 699.38 Mbs, the file-s for this book were downloaded 80 times, the file-s went public at Wed Jul 17 2019.
Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
4Automata, Computability, And Complexity- Introduction To Cryptography
By Scott Aaronson
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Automata, Computability, And Complexity- Introduction To Cryptography” Metadata:
- Title: ➤ Automata, Computability, And Complexity- Introduction To Cryptography
- Author: Scott Aaronson
- Language: English
“Automata, Computability, And Complexity- Introduction To Cryptography” Subjects and Themes:
- Subjects: Maths - Mathematics
Edition Identifiers:
- Internet Archive ID: flooved1300
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 3.61 Mbs, the file-s for this book were downloaded 139 times, the file-s went public at Thu Nov 14 2013.
Available formats:
Abbyy GZ - Animated GIF - Archive BitTorrent - DjVu - DjVuTXT - Djvu XML - Item Tile - Metadata - Scandata - Single Page Processed JP2 ZIP - Text PDF -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Automata, Computability, And Complexity- Introduction To Cryptography at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
5Automata, Computability, And Complexity- Introduction To Quantum
By Scott Aaronson
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Automata, Computability, And Complexity- Introduction To Quantum” Metadata:
- Title: ➤ Automata, Computability, And Complexity- Introduction To Quantum
- Author: Scott Aaronson
- Language: English
“Automata, Computability, And Complexity- Introduction To Quantum” Subjects and Themes:
- Subjects: Maths - Mathematics
Edition Identifiers:
- Internet Archive ID: flooved1301
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 2.41 Mbs, the file-s for this book were downloaded 113 times, the file-s went public at Thu Nov 14 2013.
Available formats:
Abbyy GZ - Animated GIF - Archive BitTorrent - DjVu - DjVuTXT - Djvu XML - Item Tile - Metadata - Scandata - Single Page Processed JP2 ZIP - Text PDF -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Automata, Computability, And Complexity- Introduction To Quantum at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
6Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory
By Barwise, Jon and Etchemendy, John, 1952-
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory” Metadata:
- Title: ➤ Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory
- Authors: Barwise, JonEtchemendy, John, 1952-
- Language: English
“Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory” Subjects and Themes:
- Subjects: ➤ Turing's world - Computer science - Logic, Symbolic and mathematical - Turing machines
Edition Identifiers:
- Internet Archive ID: turingsworld30fo00barw
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 197.61 Mbs, the file-s for this book were downloaded 177 times, the file-s went public at Tue Jan 24 2012.
Available formats:
ACS Encrypted PDF - Abbyy GZ - Animated GIF - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - MARC - MARC Binary - MARC Source - Metadata - Metadata Log - OCLC xISBN JSON - OCR Page Index - OCR Search Text - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
7Computability, An Introduction To Recursive Function Theory
By Cutland, Nigel
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Computability, An Introduction To Recursive Function Theory” Metadata:
- Title: ➤ Computability, An Introduction To Recursive Function Theory
- Author: Cutland, Nigel
- Language: English
“Computability, An Introduction To Recursive Function Theory” Subjects and Themes:
- Subjects: Computable functions - Recursion theory
Edition Identifiers:
- Internet Archive ID: computabilityint0000cutl
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 709.99 Mbs, the file-s for this book were downloaded 659 times, the file-s went public at Sat Aug 31 2019.
Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Computability, An Introduction To Recursive Function Theory at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
8The Language Of Machines : An Introduction To Computability And Formal Languages
By Floyd, Robert W
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“The Language Of Machines : An Introduction To Computability And Formal Languages” Metadata:
- Title: ➤ The Language Of Machines : An Introduction To Computability And Formal Languages
- Author: Floyd, Robert W
- Language: English
“The Language Of Machines : An Introduction To Computability And Formal Languages” Subjects and Themes:
- Subjects: Formal languages - Machine theory - Computable functions
Edition Identifiers:
- Internet Archive ID: languageofmachin0000floy
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 1622.23 Mbs, the file-s for this book were downloaded 140 times, the file-s went public at Tue Oct 04 2022.
Available formats:
ACS Encrypted PDF - AVIF Thumbnails ZIP - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - RePublisher Final Processing Log - RePublisher Initial Processing Log - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find The Language Of Machines : An Introduction To Computability And Formal Languages at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
9Introduction To Computability
By Hennie, Frederick C
About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166
“Introduction To Computability” Metadata:
- Title: Introduction To Computability
- Author: Hennie, Frederick C
- Language: English
“Introduction To Computability” Subjects and Themes:
- Subjects: Algorithms - Computational complexity - Recursive functions - Turing machines
Edition Identifiers:
- Internet Archive ID: introductiontoco0000henn
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 1010.87 Mbs, the file-s for this book were downloaded 192 times, the file-s went public at Mon Sep 02 2019.
Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Introduction To Computability at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
10Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)
By Godel, Kurt
Acknowledgments - Florida Southern College provided a most pleasant and hospitable setting for the writing of this book. Thanks to all of my friends and colleagues at the college. In particular, I thank colleague David Rose and student Biljana Cokovic for reading portions of the manuscript and offering helpful feedback. I thank my colleague Mike Way for much needed technological assistance. This book began as lecture notes for a course I taught at the University of Maryland.
“Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)” Metadata:
- Title: ➤ Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)
- Author: Godel, Kurt
- Language: English
“Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)” Subjects and Themes:
- Subjects: Logique - Mathematique - Philosophie
Edition Identifiers:
- Internet Archive ID: ➤ kurt-godel-and-per-martin-lof-a-first-course-in-logic-an-introduction-to-model-t
Downloads Information:
The book is available for download in "texts" format, the size of the file-s is: 240.44 Mbs, the file-s for this book were downloaded 340 times, the file-s went public at Sat Sep 02 2023.
Available formats:
Archive BitTorrent - DjVuTXT - Djvu XML - EPUB - Item Tile - Metadata - OCR Page Index - OCR Search Text - Page Numbers JSON - Scandata - Single Page Processed JP2 ZIP - Text PDF - chOCR - hOCR -
Related Links:
- Whefi.com: Download
- Whefi.com: Review - Coverage
- Internet Archive: Details
- Internet Archive Link: Downloads
Online Marketplaces
Find Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic) at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Source: The Open Library
The Open Library Search Results
Available books for downloads and borrow from The Open Library
1Introduction to computability
By Frederick C. Hennie

“Introduction to computability” Metadata:
- Title: Introduction to computability
- Author: Frederick C. Hennie
- Language: English
- Number of Pages: Median: 374
- Publisher: Addison-Wesley Pub. Co.
- Publish Date: 1977
- Publish Location: Reading, Mass
“Introduction to computability” Subjects and Themes:
- Subjects: Algorithms - Computational complexity - Recursive functions - Turing machines
Edition Identifiers:
- The Open Library ID: OL4883407M
- Online Computer Library Center (OCLC) ID: 2942333
- Library of Congress Control Number (LCCN): 76012796
- All ISBNs: 9780201028485 - 0201028484
Access and General Info:
- First Year Published: 1977
- Is Full Text Available: Yes
- Is The Book Public: No
- Access Status: Borrowable
Online Access
Downloads Are Not Available:
The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.
Online Borrowing:
- Borrowing from Open Library: Borrowing link
- Borrowing from Archive.org: Borrowing link
Online Marketplaces
Find Introduction to computability at online marketplaces:
- Amazon: Audiable, Kindle and printed editions.
- Ebay: New & used books.
Buy “Introduction To Computability” online:
Shop for “Introduction To Computability” on popular online marketplaces.
- Ebay: New and used books.