Downloads & Free Reading Options - Results

Introduction To Computability by Frederick C. Hennie

Read "Introduction To Computability" by Frederick C. Hennie through these free online access and download options.

Search for Downloads

Search by Title or Author

Books Results

Source: The Internet Archive

The internet Archive Search Results

Available books for downloads and borrow from The internet Archive

1Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach” Metadata:

  • Title: ➤  Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach
  • Author: ➤  
  • Language: English

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 101.69 Mbs, the file-s for this book were downloaded 16 times, the file-s went public at Fri Jun 13 2025.

Available formats:
Archive BitTorrent - DjVuTXT - Djvu XML - Item Tile - Metadata - OCR Page Index - OCR Search Text - Page Numbers JSON - Scandata - Single Page Processed JP2 ZIP - Text PDF - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Incompleteness And Computability An Open Introduction To Godel's Theorems, Richard Zach at online marketplaces:


2Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions” Metadata:

  • Title: ➤  Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions
  • Author:
  • Language: eng,ger

“Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 644.14 Mbs, the file-s for this book were downloaded 66 times, the file-s went public at Fri Jun 21 2019.

Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Enumerability, Decidability, Computability. An Introduction To The Theory Of Recursive Functions at online marketplaces:


3Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions” Metadata:

  • Title: ➤  Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions
  • Author:
  • Language: eng,ger

“Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 699.38 Mbs, the file-s for this book were downloaded 80 times, the file-s went public at Wed Jul 17 2019.

Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Enumerability, Decidability, Computability; An Introduction To The Theory Of Recursive Functions at online marketplaces:


4Automata, Computability, And Complexity- Introduction To Cryptography

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Automata, Computability, And Complexity- Introduction To Cryptography” Metadata:

  • Title: ➤  Automata, Computability, And Complexity- Introduction To Cryptography
  • Author:
  • Language: English

“Automata, Computability, And Complexity- Introduction To Cryptography” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 3.61 Mbs, the file-s for this book were downloaded 139 times, the file-s went public at Thu Nov 14 2013.

Available formats:
Abbyy GZ - Animated GIF - Archive BitTorrent - DjVu - DjVuTXT - Djvu XML - Item Tile - Metadata - Scandata - Single Page Processed JP2 ZIP - Text PDF -

Related Links:

Online Marketplaces

Find Automata, Computability, And Complexity- Introduction To Cryptography at online marketplaces:


5Automata, Computability, And Complexity- Introduction To Quantum

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Automata, Computability, And Complexity- Introduction To Quantum” Metadata:

  • Title: ➤  Automata, Computability, And Complexity- Introduction To Quantum
  • Author:
  • Language: English

“Automata, Computability, And Complexity- Introduction To Quantum” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 2.41 Mbs, the file-s for this book were downloaded 113 times, the file-s went public at Thu Nov 14 2013.

Available formats:
Abbyy GZ - Animated GIF - Archive BitTorrent - DjVu - DjVuTXT - Djvu XML - Item Tile - Metadata - Scandata - Single Page Processed JP2 ZIP - Text PDF -

Related Links:

Online Marketplaces

Find Automata, Computability, And Complexity- Introduction To Quantum at online marketplaces:


6Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory” Metadata:

  • Title: ➤  Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory
  • Authors:
  • Language: English

“Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 197.61 Mbs, the file-s for this book were downloaded 177 times, the file-s went public at Tue Jan 24 2012.

Available formats:
ACS Encrypted PDF - Abbyy GZ - Animated GIF - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - MARC - MARC Binary - MARC Source - Metadata - Metadata Log - OCLC xISBN JSON - OCR Page Index - OCR Search Text - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Turing's World 3.0 For The Macintosh : An Introduction To Computability Theory at online marketplaces:


7Computability, An Introduction To Recursive Function Theory

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Computability, An Introduction To Recursive Function Theory” Metadata:

  • Title: ➤  Computability, An Introduction To Recursive Function Theory
  • Author:
  • Language: English

“Computability, An Introduction To Recursive Function Theory” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 709.99 Mbs, the file-s for this book were downloaded 659 times, the file-s went public at Sat Aug 31 2019.

Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Computability, An Introduction To Recursive Function Theory at online marketplaces:


8The Language Of Machines : An Introduction To Computability And Formal Languages

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“The Language Of Machines : An Introduction To Computability And Formal Languages” Metadata:

  • Title: ➤  The Language Of Machines : An Introduction To Computability And Formal Languages
  • Author:
  • Language: English

“The Language Of Machines : An Introduction To Computability And Formal Languages” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 1622.23 Mbs, the file-s for this book were downloaded 140 times, the file-s went public at Tue Oct 04 2022.

Available formats:
ACS Encrypted PDF - AVIF Thumbnails ZIP - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - RePublisher Final Processing Log - RePublisher Initial Processing Log - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -

Related Links:

Online Marketplaces

Find The Language Of Machines : An Introduction To Computability And Formal Languages at online marketplaces:


9Introduction To Computability

By

About this Book x 1 Introduction to Incompleteness 1 1.1 Historical Background. . . . . . . . . . . . . . . 1 1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . 7 1.3 Overview of Incompleteness Results. . . . . . . 13 1.4 Undecidability and Incompleteness. . . . . . . . 16 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Recursive Functions 20 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 20 2.2 Primitive Recursion. . . . . . . . . . . . . . . . . 21 2.3 Composition. . . . . . . . . . . . . . . . . . . . . 24 2.4 Primitive Recursion Functions. . . . . . . . . . . 26 2.5 Primitive Recursion Notations. . . . . . . . . . . 30 2.6 Primitive Recursive Functions are Computable. . 31 2.7 Examples of Primitive Recursive Functions. . . . 32 2.8 Primitive Recursive Relations. . . . . . . . . . . 35 2.9 Bounded Minimization. . . . . . . . . . . . . . . 38 2.10 Primes. . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Sequences. . . . . . . . . . . . . . . . . . . . . . 41 2.12 Trees. . . . . . . . . . . . . . . . . . . . . . . . . 45 2.13 Other Recursions. . . . . . . . . . . . . . . . . . 46 2.14 Non-Primitive Recursive Functions. . . . . . . . 47 2.15 Partial Recursive Functions. . . . . . . . . . . . 49 2.16 The Normal Form Theorem. . . . . . . . . . . . 52 2.17 The Halting Problem. . . . . . . . . . . . . . . . 53 2.18 General Recursive Functions. . . . . . . . . . . . 55 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Arithmetization of Syntax 59 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . 59 3.2 Coding Symbols. . . . . . . . . . . . . . . . . . . 61 3.3 Coding Terms. . . . . . . . . . . . . . . . . . . . 63 3.4 Coding Formulas. . . . . . . . . . . . . . . . . . 65 3.5 Substitution. . . . . . . . . . . . . . . . . . . . . 67 3.6 Derivations in Natural Deduction. . . . . . . . . 68 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Representability in Q 76 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 76 4.2 Functions Representable in Q are Computable. 79 4.3 The Beta Function Lemma. . . . . . . . . . . . . 81 4.4 Simulating Primitive Recursion. . . . . . . . . . 85 4.5 Basic Functions are Representable in Q . . . . . 86 4.6 Composition is Representable in Q . . . . . . . . 90 4.7 Regular Minimization is Representable in Q . . 92 4.8 Computable Functions are Representable in Q . 96 4.9 Representing Relations. . . . . . . . . . . . . . . 97 4.10 Undecidability. . . . . . . . . . . . . . . . . . . . 98 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Incompleteness and Provability 102 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . 102 5.2 The Fixed-Point Lemma. . . . . . . . . . . . . . 104 5.3 The First Incompleteness Theorem. . . . . . . . 107 5.4 Rosser’s Theorem. . . . . . . . . . . . . . . . . . 109 5.5 Comparison with Gödel’s Original Paper. . . . . 111 5.6 The Derivability Conditions for PA . . . . . . . . 112 5.7 The Second Incompleteness Theorem. . . . . . 113 5.8 Löb’s Theorem. . . . . . . . . . . . . . . . . . . 116 5.9 The Undefinability of Truth. . . . . . . . . . . . 119 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 Models of Arithmetic 124 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 124 6.2 Reducts and Expansions. . . . . . . . . . . . . . 125 6.3 Isomorphic Structures. . . . . . . . . . . . . . . 126 6.4 The Theory of a Structure. . . . . . . . . . . . . 129 6.5 Standard Models of Arithmetic. . . . . . . . . . 130 6.6 Non-Standard Models. . . . . . . . . . . . . . . 133 6.7 Models of Q . . . . . . . . . . . . . . . . . . . . . 134 6.8 Models of PA . . . . . . . . . . . . . . . . . . . . 137 6.9 Computable Models of Arithmetic. . . . . . . . 141 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 143 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 Second-Order Logic 147 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . 147 7.2 Terms and Formulas. . . . . . . . . . . . . . . . 148 7.3 Satisfaction. . . . . . . . . . . . . . . . . . . . . 150 7.4 Semantic Notions. . . . . . . . . . . . . . . . . . 154 7.5 Expressive Power. . . . . . . . . . . . . . . . . . 154 7.6 Describing Infinite and Countable Domains. . . 156 7.7 Second-order Arithmetic. . . . . . . . . . . . . . 158 7.8 Second-order Logic is not Axiomatizable. . . . . 161 7.9 Second-order Logic is not Compact. . . . . . . . 162 7.10 The Löwenheim–Skolem Theorem Fails for Second-order Logic. . . . . . . . . . . . . . . . . 163 7.11 Comparing Sets. . . . . . . . . . . . . . . . . . . 163 7.12 Cardinalities of Sets. . . . . . . . . . . . . . . . . 165 7.13 The Power of the Continuum. . . . . . . . . . . 166

“Introduction To Computability” Metadata:

  • Title: Introduction To Computability
  • Author:
  • Language: English

“Introduction To Computability” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 1010.87 Mbs, the file-s for this book were downloaded 192 times, the file-s went public at Mon Sep 02 2019.

Available formats:
ACS Encrypted EPUB - ACS Encrypted PDF - Abbyy GZ - Cloth Cover Detection Log - DjVuTXT - Djvu XML - Dublin Core - EPUB - Item Tile - JPEG Thumb - JSON - LCP Encrypted EPUB - LCP Encrypted PDF - Log - MARC - MARC Binary - Metadata - OCR Page Index - OCR Search Text - PNG - Page Numbers JSON - Scandata - Single Page Original JP2 Tar - Single Page Processed JP2 ZIP - Text PDF - Title Page Detection Log - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Introduction To Computability at online marketplaces:


10Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)

By

Acknowledgments - Florida Southern College provided a most pleasant and hospitable setting for the writing of this book. Thanks to all of my friends and colleagues at the college. In particular, I thank colleague David Rose and student Biljana Cokovic for reading portions of the manuscript and offering helpful feedback. I thank my colleague Mike Way for much needed technological assistance. This book began as lecture notes for a course I taught at the University of Maryland.

“Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)” Metadata:

  • Title: ➤  Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)
  • Author:
  • Language: English

“Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic)” Subjects and Themes:

Edition Identifiers:

Downloads Information:

The book is available for download in "texts" format, the size of the file-s is: 240.44 Mbs, the file-s for this book were downloaded 340 times, the file-s went public at Sat Sep 02 2023.

Available formats:
Archive BitTorrent - DjVuTXT - Djvu XML - EPUB - Item Tile - Metadata - OCR Page Index - OCR Search Text - Page Numbers JSON - Scandata - Single Page Processed JP2 ZIP - Text PDF - chOCR - hOCR -

Related Links:

Online Marketplaces

Find Kurt Godel And Per Martin Lof A First Course In Logic An Introduction To Model Theory, Proof Theory, Computability, And Complexity ( Oxford Texts In Logic) at online marketplaces:


Source: The Open Library

The Open Library Search Results

Available books for downloads and borrow from The Open Library

1Introduction to computability

By

Book's cover

“Introduction to computability” Metadata:

  • Title: Introduction to computability
  • Author:
  • Language: English
  • Number of Pages: Median: 374
  • Publisher: Addison-Wesley Pub. Co.
  • Publish Date:
  • Publish Location: Reading, Mass

“Introduction to computability” Subjects and Themes:

Edition Identifiers:

Access and General Info:

  • First Year Published: 1977
  • Is Full Text Available: Yes
  • Is The Book Public: No
  • Access Status: Borrowable

Online Access

Downloads Are Not Available:

The book is not public therefore the download links will not allow the download of the entire book, however, borrowing the book online is available.

Online Borrowing:

Online Marketplaces

Find Introduction to computability at online marketplaces:


Buy “Introduction To Computability” online:

Shop for “Introduction To Computability” on popular online marketplaces.