Dictionary Of Symbols Of Mathematical Logic Feys And Finch - Info and Reading Options
By logic, math
"Dictionary Of Symbols Of Mathematical Logic Feys And Finch" and the language of the book is English.
“Dictionary Of Symbols Of Mathematical Logic Feys And Finch” Metadata:
- Title: ➤ Dictionary Of Symbols Of Mathematical Logic Feys And Finch
- Author: logic, math
- Language: English
“Dictionary Of Symbols Of Mathematical Logic Feys And Finch” Subjects and Themes:
- Subjects: logic - mathemathic - demostration - formalism
Edition Identifiers:
- Internet Archive ID: logica-finch-compressed
AI-generated Review of “Dictionary Of Symbols Of Mathematical Logic Feys And Finch”:
"Dictionary Of Symbols Of Mathematical Logic Feys And Finch" Description:
The Internet Archive:
<div><div class="first_toc_column"><div class="first_toc_pad"><table><tbody><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">PRELIMINARIES </span></span></div></td><td class="toc_number" align="right">1</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Forms and functions </span></span></div></td><td class="toc_number" align="right">8</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Operators and bound variables </span></span></div></td><td class="toc_number" align="right">14</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Use of algebraic notation </span></span></div></td><td class="toc_number" align="right">23</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Notation for twovalued truthtables </span></span></div></td><td class="toc_number" align="right">30</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Modal logics </span></span></div></td><td class="toc_number" align="right">41</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Scope of logical operators </span></span></div></td><td class="toc_number" align="right">47</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Quantifiers </span></span></div></td><td class="toc_number" align="right">54</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr></tbody></table></div></div><div class="second_toc_column"><div class="second_toc_pad"><table><tbody><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Functions from classes of classes to classes </span></span></div></td><td class="toc_number" align="right">97</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Calculus of individuals </span></span></div></td><td class="toc_number" align="right">98</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">CALCULUS OF RELATIONS </span></span></div></td><td class="toc_number" align="right">100</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Relationtorelation functions that are proper to the relational calculus </span></span></div></td><td class="toc_number" align="right">104</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">to relations </span></span></div></td><td class="toc_number" align="right">106</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Functions from relations to classes </span></span></div></td><td class="toc_number" align="right">107</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Identity and notions derived from identity </span></span></div></td><td class="toc_number" align="right">109</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Representation of nonpropositional functions by their associ ated relations </span></span></div></td><td class="toc_number" align="right">113</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr></tbody></table></div></div><br style="clear:both;" /></div><div><div class="first_toc_column"><div class="first_toc_pad"><table><tbody><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Tables of symbols </span></span></div></td><td class="toc_number" align="right">57</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">An example of a firstorder functional calculus </span></span></div></td><td class="toc_number" align="right">58</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Quantifiers in nonclassical logic </span></span></div></td><td class="toc_number" align="right">60</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Firstorder functional calculus with identity </span></span></div></td><td class="toc_number" align="right">62</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Quasidefinite descriptions </span></span></div></td><td class="toc_number" align="right">64</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">FUNCTIONAL CALCULI OF HIGHER ORDER THE THEORY OF TYPES </span></span></div></td><td class="toc_number" align="right">66</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">The theory of types </span></span></div></td><td class="toc_number" align="right">68</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Explicit indication of type </span></span></div></td><td class="toc_number" align="right">70</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Implicit indication of type </span></span></div></td><td class="toc_number" align="right">73</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">COMBINATORY LOGIC </span></span></div></td><td class="toc_number" align="right">74</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">The notation of combinatory logic </span></span></div></td><td class="toc_number" align="right">77</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Example of a simple system of combinatory logic </span></span></div></td><td class="toc_number" align="right">79</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Combinations and the theory of combinators </span></span></div></td><td class="toc_number" align="right">81</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Lambdaconversion </span></span></div></td><td class="toc_number" align="right">84</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Definitions of combinators as abstracts </span></span></div></td><td class="toc_number" align="right">87</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Further extensions of combinatory logic </span></span></div></td><td class="toc_number" align="right">89</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">CALCULUS OF CLASSES </span></span></div></td><td class="toc_number" align="right">90</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Variables abstracts and constants for classes </span></span></div></td><td class="toc_number" align="right">92</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Operators corresponding to those of the functional calculus </span></span></div></td><td class="toc_number" align="right">93</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Functions from classes to propositions </span></span></div></td><td class="toc_number" align="right">94</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Functions from classes to classes </span></span></div></td><td class="toc_number" align="right">95</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr></tbody></table></div></div><div class="second_toc_column"><div class="second_toc_pad"><table><tbody><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Some further important relations and classes </span></span></div></td><td class="toc_number" align="right">116</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Relations of more than two terms </span></span></div></td><td class="toc_number" align="right">123</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">ARITHMETIC FORMALIZED AS AN INDEPENDENT DISCIPLINE </span></span></div></td><td class="toc_number" align="right">125</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Formulation of the theory as an independent discipline </span></span></div></td><td class="toc_number" align="right">126</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Recursive arithmetic </span></span></div></td><td class="toc_number" align="right">127</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">The ufunction </span></span></div></td><td class="toc_number" align="right">129</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">NUMBERS AS DEFINED WITHIN SYSTEMS OF LOGIC </span></span></div></td><td class="toc_number" align="right">130</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Von Neumanns method of defining numbers </span></span></div></td><td class="toc_number" align="right">132</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Arithmetic operations on natural numbers defined by means of the ancestral </span></span></div></td><td class="toc_number" align="right">133</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Arithmetic operations on cardinal numbers </span></span></div></td><td class="toc_number" align="right">134</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">The definition of relationnumbers by ordinal similarity </span></span></div></td><td class="toc_number" align="right">137</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Arithmetic operations upon relationnumbers </span></span></div></td><td class="toc_number" align="right">139</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">METAMATHEMATICS </span></span></div></td><td class="toc_number" align="right">141</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Metamathematical variables and constants </span></span></div></td><td class="toc_number" align="right">143</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Designations for classes of symbols and classes of entities </span></span></div></td><td class="toc_number" align="right">147</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Designations for expressions </span></span></div></td><td class="toc_number" align="right">149</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Substitution </span></span></div></td><td class="toc_number" align="right">152</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Theoremhood and derivability </span></span></div></td><td class="toc_number" align="right">153</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">INDEX OF NAMES </span></span></div></td><td class="toc_number" align="right">157</td></tr><tr><td class="toc_border"><br /></td><td class="toc_border"><br /></td></tr><tr><td class="toc_entry"><div class="toc_entry"><span style="white-space:nowrap;"><span dir="ltr">Página de créditos</span></span></div></td></tr></tbody></table></div></div></div><h1 class="a-spacing-none a-text-normal"><br /></h1>
Read “Dictionary Of Symbols Of Mathematical Logic Feys And Finch”:
Read “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” by choosing from the options below.
Available Downloads for “Dictionary Of Symbols Of Mathematical Logic Feys And Finch”:
"Dictionary Of Symbols Of Mathematical Logic Feys And Finch" is available for download from The Internet Archive in "texts" format, the size of the file-s is: 48.53 Mbs, and the file-s went public at Thu Jul 17 2025.
Legal and Safety Notes
Copyright Disclaimer and Liability Limitation:
A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.
B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.
C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.
D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.
E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.
Virus Scanning for Your Peace of Mind:
The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:
How to scan a direct download link for viruses:
- 1- Copy the direct link to the file you want to download (don’t open it yet). (a free online tool) and paste the direct link into the provided field to start the scan.
- 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
- 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
- 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.
Available Downloads
- Source: Internet Archive
- Internet Archive Link: Archive.org page
- All Files are Available: Yes
- Number of Files: 16
- Number of Available Files: 16
- Added Date: 2025-07-17 17:46:36
- Scanner: Internet Archive HTML5 Uploader 1.7.0
- PPI (Pixels Per Inch): 150
- OCR: tesseract 5.3.0-6-g76ae
- OCR Detected Language: en
Available Files:
1- Image Container PDF
- File origin: original
- File Format: Image Container PDF
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed.pdf
- Direct Link: Click here
2- Item Tile
- File origin: original
- File Format: Item Tile
- File Size: 0.00 Mbs
- File Name: __ia_thumb.jpg
- Direct Link: Click here
3- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: logica-finch-compressed_files.xml
- Direct Link: Click here
4- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: logica-finch-compressed_meta.sqlite
- Direct Link: Click here
5- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: logica-finch-compressed_meta.xml
- Direct Link: Click here
6- chOCR
- File origin: derivative
- File Format: chOCR
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_chocr.html.gz
- Direct Link: Click here
7- DjVuTXT
- File origin: derivative
- File Format: DjVuTXT
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_djvu.txt
- Direct Link: Click here
8- Djvu XML
- File origin: derivative
- File Format: Djvu XML
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_djvu.xml
- Direct Link: Click here
9- hOCR
- File origin: derivative
- File Format: hOCR
- File Size: 0.01 Mbs
- File Name: LOGICA FINCH_compressed_hocr.html
- Direct Link: Click here
10- OCR Page Index
- File origin: derivative
- File Format: OCR Page Index
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_hocr_pageindex.json.gz
- Direct Link: Click here
11- OCR Search Text
- File origin: derivative
- File Format: OCR Search Text
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_hocr_searchtext.txt.gz
- Direct Link: Click here
12- Single Page Processed JP2 ZIP
- File origin: derivative
- File Format: Single Page Processed JP2 ZIP
- File Size: 0.02 Mbs
- File Name: LOGICA FINCH_compressed_jp2.zip
- Direct Link: Click here
13- Page Numbers JSON
- File origin: derivative
- File Format: Page Numbers JSON
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_page_numbers.json
- Direct Link: Click here
14- Scandata
- File origin: derivative
- File Format: Scandata
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_scandata.xml
- Direct Link: Click here
15- Additional Text PDF
- File origin: derivative
- File Format: Additional Text PDF
- File Size: 0.00 Mbs
- File Name: LOGICA FINCH_compressed_text.pdf
- Direct Link: Click here
16- Archive BitTorrent
- File origin: metadata
- File Format: Archive BitTorrent
- File Size: 0.00 Mbs
- File Name: logica-finch-compressed_archive.torrent
- Direct Link: Click here
Search for “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” in Libraries Near You:
Read or borrow “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” at a library near you.
Buy “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” online:
Shop for “Dictionary Of Symbols Of Mathematical Logic Feys And Finch” on popular online marketplaces.
- Ebay: New and used books.