"Detecting Regime Change in Computational Finance" - Information and Links:

Detecting Regime Change in Computational Finance - Info and Reading Options

Data Science, Machine Learning and Algorithmic Trading

"Detecting Regime Change in Computational Finance" was published by Taylor & Francis Group in 2020 - Boca Raton, it has 144 pages and the language of the book is English.


“Detecting Regime Change in Computational Finance” Metadata:

  • Title: ➤  Detecting Regime Change in Computational Finance
  • Authors:
  • Language: English
  • Number of Pages: 144
  • Publisher: Taylor & Francis Group
  • Publish Date:
  • Publish Location: Boca Raton

“Detecting Regime Change in Computational Finance” Subjects and Themes:

Edition Identifiers:

AI-generated Review of “Detecting Regime Change in Computational Finance”:


"Detecting Regime Change in Computational Finance" Description:

Open Data:

"Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and, Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarizing price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzag"). By sampling data in a different way, the book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning, and data science"

Read “Detecting Regime Change in Computational Finance”:

Read “Detecting Regime Change in Computational Finance” by choosing from the options below.

Search for “Detecting Regime Change in Computational Finance” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Detecting Regime Change in Computational Finance” in Libraries Near You:

Read or borrow “Detecting Regime Change in Computational Finance” from your local library.

Buy “Detecting Regime Change in Computational Finance” online:

Shop for “Detecting Regime Change in Computational Finance” on popular online marketplaces.