"Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search." - Information and Links:

Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search. - Info and Reading Options

"Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search." and the language of the book is English.


“Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” Metadata:

  • Title: ➤  Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.
  • Authors: ➤  
  • Language: English

Edition Identifiers:

  • Internet Archive ID: pubmed-PMC4083366

AI-generated Review of “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.”:


"Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search." Description:

The Internet Archive:

This article is from <a href="//archive.org/search.php?query=journaltitle%3A%28BMC%20Bioinformatics%29" rel="ugc nofollow">BMC Bioinformatics</a>, <a href="//archive.org/search.php?query=journaltitle%3A%28BMC%20Bioinformatics%29%20AND%20volume%3A%2815%29" rel="ugc nofollow">volume 15</a>.<h2>Abstract</h2>Background: The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. Results: We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. Conclusion: The work presented here, including our algorithm for converting cell-based models into graphs for comparison with data stored in an external data repository, has made feasible the automated development, training, and validation of computational models using morphology-based data. This work is part of an ongoing project to automate the search process, which will greatly expand our ability to identify, consider, and test biological mechanisms in the field of regenerative biology.

Read “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.”:

Read “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” by choosing from the options below.

Available Downloads for “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.”:

"Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search." is available for download from The Internet Archive in "texts" format, the size of the file-s is: 27.29 Mbs, and the file-s went public at Wed Oct 15 2014.

Legal and Safety Notes

Copyright Disclaimer and Liability Limitation:

A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.

B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.

C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.

D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.

E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.

Virus Scanning for Your Peace of Mind:

The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:

How to scan a direct download link for viruses:

  • 1- Copy the direct link to the file you want to download (don’t open it yet).
  • (a free online tool) and paste the direct link into the provided field to start the scan.
  • 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
  • 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
  • 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.

Available Downloads

  • Source: Internet Archive
  • Internet Archive Link: Archive.org page
  • All Files are Available: Yes
  • Number of Files: 14
  • Number of Available Files: 14
  • Added Date: 2014-10-15 10:04:42
  • Scanner: Internet Archive Python library 0.7.2
  • PPI (Pixels Per Inch): 600
  • OCR: ABBYY FineReader 9.0

Available Files:

1- Text PDF

  • File origin: original
  • File Format: Text PDF
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178.pdf
  • Direct Link: Click here

2- Item Tile

  • File origin: original
  • File Format: Item Tile
  • File Size: 0.00 Mbs
  • File Name: __ia_thumb.jpg
  • Direct Link: Click here

3- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4083366_files.xml
  • Direct Link: Click here

4- JSON

  • File origin: original
  • File Format: JSON
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4083366_medline.json
  • Direct Link: Click here

5- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4083366_meta.sqlite
  • Direct Link: Click here

6- Metadata

  • File origin: original
  • File Format: Metadata
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4083366_meta.xml
  • Direct Link: Click here

7- DjVu

  • File origin: derivative
  • File Format: DjVu
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178.djvu
  • Direct Link: Click here

8- Animated GIF

  • File origin: derivative
  • File Format: Animated GIF
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178.gif
  • Direct Link: Click here

9- Abbyy GZ

  • File origin: derivative
  • File Format: Abbyy GZ
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178_abbyy.gz
  • Direct Link: Click here

10- DjVuTXT

  • File origin: derivative
  • File Format: DjVuTXT
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178_djvu.txt
  • Direct Link: Click here

11- Djvu XML

  • File origin: derivative
  • File Format: Djvu XML
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178_djvu.xml
  • Direct Link: Click here

12- Single Page Processed JP2 ZIP

  • File origin: derivative
  • File Format: Single Page Processed JP2 ZIP
  • File Size: 0.02 Mbs
  • File Name: PMC4083366-1471-2105-15-178_jp2.zip
  • Direct Link: Click here

13- Scandata

  • File origin: derivative
  • File Format: Scandata
  • File Size: 0.00 Mbs
  • File Name: PMC4083366-1471-2105-15-178_scandata.xml
  • Direct Link: Click here

14- Archive BitTorrent

  • File origin: metadata
  • File Format: Archive BitTorrent
  • File Size: 0.00 Mbs
  • File Name: pubmed-PMC4083366_archive.torrent
  • Direct Link: Click here

Search for “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” in Libraries Near You:

Read or borrow “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” from your local library.

Buy “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” online:

Shop for “Design Of A Flexible Component Gathering Algorithm For Converting Cell-based Models To Graph Representations For Use In Evolutionary Search.” on popular online marketplaces.


Related Books