"Computational methods for electromagnetic and optical systems" - Information and Links:

Computational methods for electromagnetic and optical systems - Info and Reading Options

"Computational methods for electromagnetic and optical systems" was published by CRC Press in 2011 - Boca Raton, FL, it has 416 pages and the language of the book is English.


“Computational methods for electromagnetic and optical systems” Metadata:

  • Title: ➤  Computational methods for electromagnetic and optical systems
  • Author:
  • Language: English
  • Number of Pages: 416
  • Publisher: CRC Press
  • Publish Date:
  • Publish Location: Boca Raton, FL

“Computational methods for electromagnetic and optical systems” Subjects and Themes:

Edition Specifications:

  • Pagination: xv, 416 p. :

Edition Identifiers:

AI-generated Review of “Computational methods for electromagnetic and optical systems”:


"Computational methods for electromagnetic and optical systems" Table Of Contents:

  • 1- Machine generated contents note: 1.1.Introduction
  • 2- 1.2.Fourier Series and Its Properties
  • 3- 1.3.Fourier Transform
  • 4- 1.4.Hankel Transform
  • 5- 1.5.Discrete Fourier Transform
  • 6- 1.6.Review of Eigenanalysis
  • 7- Problems
  • 8- References
  • 9- 2.1.Introduction
  • 10- 2.2.Transfer Function for Propagation
  • 11- 2.3.Split-Step Beam Propagation Method
  • 12- 2.4.Beam Propagation in Linear Media
  • 13- 2.4.1.Linear Free-Space Beam Propagation
  • 14- 2.4.2.Propagation of Gaussian Beam through Graded Index Medium
  • 15- 2.5.Beam Propagation through Diffraction Gratings: Acoustooptic Diffraction
  • 16- 2.6.Beam Propagation in Kerr-Type Nonlinear Media
  • 17- 2.6.1.Nonlinear Schrodinger Equation
  • 18- 2.6.2.Simulation of Self-Focusing Using Adaptive Fourier and Fourier-Hankel Transform Methods
  • 19- 2.7.Beam Propagation and Coupling in Photorefractive Media
  • 20- 2.7.1.Basic Photorefractive Physics
  • 21- 2.7.2.Induced Transmission Gratings
  • 22- 2.7.3.Induced Reflection Gratings and Bidirectional Beam Propagation Method
  • 23- 2.8.z-Scan Method
  • 24- 2.8.1.Model for Beam Propagation through PR Lithium Niobate
  • 25- 2.8.2.z-Scan: Analytical Results, Simulations, and Sample Experiments
  • 26- Problems
  • 27- References
  • 28- 3.1.Introduction
  • 29- 3.2.Maxwell's Equations
  • 30- 3.3.Constitutive Relations: Frequency Dependence and Chirality
  • 31- 3.3.1.Constitutive Relations and Frequency Dependence
  • 32- 3.3.2.Constitutive Relations for Chiral Media
  • 33- 3.4.Plane Wave Propagation through Linear Homogeneous Isotropic Media
  • 34- 3.4.1.Dispersive Media
  • 35- 3.4.2.Chiral Media
  • 36- 3.5.Power Flow, Stored Energy, Energy Velocity, Group Velocity, and Phase Velocity
  • 37- 3.6.Metamaterials and Negative Index Media
  • 38- 3.6.1.Beam Propagation in NIMs
  • 39- 3.7.Propagation through Photonic Band Gap Structures: The Transfer Matrix Method
  • 40- 3.7.1.Periodic PIM-NIM Structures
  • 41- 3.7.2.EM Propagation in Complex Structures
  • 42- Problems
  • 43- References
  • 44- 4.1.Introduction
  • 45- 4.2.State Variable Analysis of an Isotropic Layer
  • 46- 4.2.1.Introduction
  • 47- 4.2.2.Analysis
  • 48- 4.2.3.Complex Poynting Theorem
  • 49- 4.2.4.State Variable Analysis of an Isotropic Layer in Free Space
  • 50- 4.2.5.State Variable Analysis of a Radar Absorbing Layer
  • 51- 4.2.6.State Variable Analysis of a Source in Isotropic Layered Media
  • 52- 4.3.State Variable Analysis of an Anisotropic Layer
  • 53- 4.3.1.Introduction
  • 54- 4.3.2.Basic Equations
  • 55- 4.3.3.Numerical Results
  • 56- 4.4.One-Dimensional k-Space State Variable Solution
  • 57- 4.4.1.Introduction
  • 58- 4.4.2.k-Space Formulation
  • 59- 4.4.3.Ground Plane Slot Waveguide System
  • 60- 4.4.4.Ground Plane Slot Waveguide System, Numerical Results
  • 61- Problems
  • 62- References
  • 63- 5.1.Introduction
  • 64- 5.2.H-Mode Planar Diffraction Grating Analysis
  • 65- 5.2.1.Full-Field Formulation
  • 66- 5.2.2.Differential Equation Method
  • 67- 5.2.3.Numerical Results
  • 68- 5.2.4.Diffraction Grating Mirror
  • 69- 5.3.Application of RCWA and the Complex Poynting Theorem to E-Mode Planar Diffraction Grating Analysis
  • 70- 5.3.1.E-Mode RCWA Formulation
  • 71- 5.3.2.Complex Poynting Theorem
  • 72- 5.3.2.1.Sample Calculation of PuWE
  • 73- 5.3.2.2.Other Poynting Theorem Integrals
  • 74- 5.3.2.3.Simplification of Results and Normalization
  • 75- 5.3.3.Numerical Results
  • 76- 5.4.Multilayer Analysis of E-Mode Diffraction Gratings
  • 77- 5.4.1.E-Mode Formulation
  • 78- 5.4.2.Numerical Results
  • 79- 5.5.Crossed Diffraction Grating
  • 80- 5.5.1.Crossed Diffraction Grating Formulation
  • 81- 5.5.2.Numerical Results
  • 82- Problems
  • 83- References
  • 84- 6.1.Introduction to Photorefractive Materials
  • 85- 6.2.Dynamic Nonlinear Model for Diffusion-Controlled PR Materials
  • 86- 6.3.Approximate Analysis
  • 87- 6.3.1.Numerical Algorithm
  • 88- 6.3.2.TE Numerical Simulation Results
  • 89- 6.3.3.TM Numerical Simulation Results
  • 90- 6.3.4.Discussion of Results from Approximate Analysis
  • 91- 6.4.Exact Analysis
  • 92- 6.4.1.Finite Difference Kukhtarev Analysis
  • 93- 6.4.2.TM Numerical Simulation Results
  • 94- 6.5.Reflection Gratings
  • 95- 6.5.1.RCWA Optical Field Analysis
  • 96- 6.5.2.Material Analysis
  • 97- 6.5.3.Numerical Results
  • 98- 6.6.Conclusion
  • 99- Problems
  • 100- References
  • 101- 7.1.Introduction
  • 102- 7.2.Rigorous Coupled Wave Analysis Circular Cylindrical Systems
  • 103- 7.3.Rigorous Coupled Wave Analysis Mathematical Formulation
  • 104- 7.3.1.Introduction
  • 105- 7.3.2.Basic Equations
  • 106- 7.3.3.Numerical Results
  • 107- 7.4.Anisotropic Cylindrical Scattering
  • 108- 7.4.1.Introduction
  • 109- 7.4.2.State Variable Analysis
  • 110- 7.4.3.Numerical Results
  • 111- 7.5.Spherical Inhomogeneous Analysis
  • 112- 7.5.1.Introduction
  • 113- 7.5.2.Rigorous Coupled Wave Theory Formulation
  • 114- 7.5.3.Numerical Results
  • 115- Problems
  • 116- References
  • 117- 8.1.Introduction
  • 118- 8.2.RCWA Bipolar Coordinate Formulation
  • 119- 8.2.1.Bipolar and Eccentric Circular Cylindrical, Scattering Region Coordinate Description
  • 120- 8.2.2.Bipolar RCWA State Variable Formulation
  • 121- 8.2.3.Second-Order Differential Matrix Formulation
  • 122- 8.2.4.Thin-Layer, Bipolar Coordinate Eigenfunction Solution
  • 123- 8.3.Bessel Function Solutions in Homogeneous Regions of Scattering System
  • 124- 8.4.Thin-Layer SV Solution in the Inhomogeneous Region of the Scattering System
  • 125- 8.5.Matching of EM Boundary Conditions at Interior-Exterior Interfaces of the Scattering System
  • 126- 8.5.1.Bipolar and Circular Cylindrical Coordinate Relations
  • 127- 8.5.2.Details of Region 2 (Inhomogenous Region) Region 3 (Homogenous Interior Region) EM Boundary Value Matching
  • 128- 8.5.3.Region 0 (Homogenous Exterior Region) Region 2 (Inhomogenous Region) EM Boundary Value Matching
  • 129- 8.5.4.Details of Layer-to-Layer EM Boundary Value Matching in the Inhomogeneous Region
  • 130- 8.5.5.Inhomogeneous Region Ladder-Matrix
  • 131- 8.6.Region 1 Region 3 Bessel-Fourier Coefficient Transfer Matrix
  • 132- 8.7.Overall System Matrix
  • 133- 8.8.Alternate Forms of the Bessel-Fourier Coefficient Transfer Matrix
  • 134- 8.9.Bistatic Scattering Width
  • 135- 8.10.Validation of Numerical Results
  • 136- 8.11.Numerical Results, Examples of Scattering from Homogeneous and Inhomogeneous Material Objects
  • 137- 8.12.Error and Convergence Analysis
  • 138- 8.13.Summary, Conclusions, and Future Work
  • 139- Problems
  • 140- Appendix 8.A
  • 141- Appendix 8.B
  • 142- References
  • 143- 9.1.Introduction
  • 144- 9.2.Case Study I: Fourier Series Expansion, Eigenvalue and Eigenfunction Analysis, and Transfer Matrix Analysis
  • 145- 9.3.Case Study II: Comparison of KPE BA, BC Validation Methods, and SV Methods for Relatively Small Diameter Scattering Objects
  • 146- 9.4.Case Study III: Comparison of BA, BC, and SV Methods for Gradually, Stepped-Up, Index Profile Scattering Objects
  • 147- 9.5.Case Study IV: Comparison of BA, BC, and SV Methods for Mismatched, Index Profile, Scattering Objects
  • 148- 9.6.Case Study V: Comparison of BA, BC, and SV Methods for Gradually, Stepped-Up, Index Scattering Objects with High Index Core
  • 149- 9.7.Case Study VI: Calculation and Convergence Analysis of EM Fields of an Inhomogeneous Region Material Object Using the SV Method, Δepsilon = 1, α = 5.5, Λ = 0, Example
  • 150- 9.8.Case Study VII: Calculation and Convergence Analysis of EM Fields of an Inhomogeneous Region Material Object Using the SV Method, Δepslon = 0.4, α = 5.5, Λ = 0 Example
  • 151- 9.9.Case Study VIII: Comparison of Homogeneous and Inhomogeneous Region Bistatic Line Widths
  • 152- 9.10.Case Study IX: Conservation of Power Analysis
  • 153- Appendix 9.A: Interpolation Equations.

"Computational methods for electromagnetic and optical systems" Description:

The Open Library:

"This text introduces and examines a variety of spectral computational techniques - including k-space theory, Floquet theory and beam propagation - that are used to analyze electromagnetic and optical problems. The book also presents a solution to Maxwell's equations from a set of first order coupled partial differential equations"--Provided by publisher.

Read “Computational methods for electromagnetic and optical systems”:

Read “Computational methods for electromagnetic and optical systems” by choosing from the options below.

Search for “Computational methods for electromagnetic and optical systems” downloads:

Visit our Downloads Search page to see if downloads are available.

Find “Computational methods for electromagnetic and optical systems” in Libraries Near You:

Read or borrow “Computational methods for electromagnetic and optical systems” from your local library.

Buy “Computational methods for electromagnetic and optical systems” online:

Shop for “Computational methods for electromagnetic and optical systems” on popular online marketplaces.



Find "Computational Methods For Electromagnetic And Optical Systems" in Wikipdedia