"Clustering" - Information and Links:

Clustering - Info and Reading Options

Book's cover
The cover of “Clustering” - Open Library.

"Clustering" was published by Wiley in 2009 - Hoboken, N.J, it has 358 pages and the language of the book is English.


“Clustering” Metadata:

  • Title: Clustering
  • Author:
  • Language: English
  • Number of Pages: 358
  • Publisher: Wiley
  • Publish Date:
  • Publish Location: Hoboken, N.J

“Clustering” Subjects and Themes:

Edition Specifications:

  • Pagination: x, 358 p. :

Edition Identifiers:

AI-generated Review of “Clustering”:


"Clustering" Table Of Contents:

  • 1- COVER
  • 2- CONTENTS
  • 3- PREFACE
  • 4- 1. CLUSTER ANALYSIS
  • 5- 1.1. Classification and Clustering
  • 6- 1.2. Definition of Clusters
  • 7- 1.3. Clustering Applications
  • 8- 1.4. Literature of Clustering Algorithms
  • 9- 1.5. Outline of the Book
  • 10- 2. PROXIMITY MEASURES
  • 11- 2.1. Introduction
  • 12- 2.2. Feature Types and Measurement Levels
  • 13- 2.3. Definition of Proximity Measures
  • 14- 2.4. Proximity Measures for Continuous Variables
  • 15- 2.5. Proximity Measures for Discrete Variables
  • 16- 2.6. Proximity Measures for Mixed Variables
  • 17- 2.7. Summary
  • 18- 3. HIERARCHICAL CLUSTERING
  • 19- 3.1. Introduction
  • 20- 3.2. Agglomerative Hierarchical Clustering
  • 21- 3.3. Divisive Hierarchical Clustering
  • 22- 3.4. Recent Advances
  • 23- 3.5. Applications
  • 24- 3.6. Summary
  • 25- 4. PARTITIONAL CLUSTERING
  • 26- 4.1. Introduction
  • 27- 4.2. Clustering Criteria
  • 28- 4.3. K-Means Algorithm
  • 29- 4.4. Mixture Density-Based Clustering
  • 30- 4.5. Graph Theory-Based Clustering
  • 31- 4.6. Fuzzy Clustering
  • 32- 4.7. Search Techniques-Based Clustering Algorithms
  • 33- 4.8. Applications
  • 34- 4.9. Summary
  • 35- 5. NEURAL NETWORK-BASED CLUSTERING
  • 36- 5.1. Introduction
  • 37- 5.2. Hard Competitive Learning Clustering
  • 38- 5.3. Soft Competitive Learning Clustering
  • 39- 5.4. Applications
  • 40- 5.5. Summary
  • 41- 6. KERNEL-BASED CLUSTERING
  • 42- 6.1. Introduction
  • 43- 6.2. Kernel Principal Component Analysis
  • 44- 6.3. Squared-Error-Based Clustering with Kernel Functions
  • 45- 6.4. Support Vector Clustering
  • 46- 6.5. Applications
  • 47- 6.6. Summary
  • 48- 7. SEQUENTIAL DATA CLUSTERING
  • 49- 7.1. Introduction
  • 50- 7.2. Sequence Similarity
  • 51- 7.3. Indirect Sequence Clustering
  • 52- 7.4. Model-Based Sequence Clustering
  • 53- 7.5. Applications-Genomic and Biological Sequence Clustering
  • 54- 7.6. Summary
  • 55- 8. LARGE-SCALE DATA CLUSTERING
  • 56- 8.1. Introduction
  • 57- 8.2. Random Sampling Methods
  • 58- 8.3. Condensation-Based Methods
  • 59- 8.4. Density-Based Methods
  • 60- 8.5. Grid-Based Methods
  • 61- 8.6. Divide and Conquer
  • 62- 8.7. Incremental Clustering
  • 63- 8.8. Applications
  • 64- 8.9. Summary
  • 65- 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING
  • 66- 9.1. Introduction
  • 67- 9.2. Linear Projection Algorithms
  • 68- 9.3. Nonlinear Projection Algorithms
  • 69- 9.4. Projected and Subspace Clustering
  • 70- 9.5. Applications
  • 71- 9.6. Summary
  • 72- 10. CLUSTER VALIDITY
  • 73- 10.1. Introduction
  • 74- 10.2. External Criteria
  • 75- 10.3. Internal Criteria
  • 76- 10.4. Relative Criteria
  • 77- 10.5. Summary
  • 78- 11. CONCLUDING REMARKS
  • 79- PROBLEMS
  • 80- REFERENCES
  • 81- AUTHOR INDEX
  • 82- SUBJECT INDEX.

Read “Clustering”:

Read “Clustering” by choosing from the options below.

Search for “Clustering” downloads:

Visit our Downloads Search page to see if downloads are available.

Borrow "Clustering" Online:

Check on the availability of online borrowing. Please note that online borrowing has copyright-based limitations and that the quality of ebooks may vary.

Find “Clustering” in Libraries Near You:

Read or borrow “Clustering” from your local library.

Buy “Clustering” online:

Shop for “Clustering” on popular online marketplaces.