Clustering - Info and Reading Options
By Rui Xu
"Clustering" was published by Wiley & Sons, Incorporated, John in 2008 - New Jersey, the book is classified in bibliography genre, it has 1 pages and the language of the book is English.
“Clustering” Metadata:
- Title: Clustering
- Author: Rui Xu
- Language: English
- Number of Pages: 1
- Publisher: ➤ Wiley & Sons, Incorporated, John
- Publish Date: 2008
- Publish Location: New Jersey
- Genres: bibliography
- Dewey Decimal Classification: 519.53
- Library of Congress Classification: QA278 .X8 2009
“Clustering” Subjects and Themes:
- Subjects: ➤ Cluster analysis - Cluster Analysis - Cluster <Rechnernetz> - Classification automatique (Statistique) - Cluster-Analyse - Cluster theory (nuclear physics) - Multivariate analysis
Edition Specifications:
- Number of Pages: 1 online resource (370 p.)
- Pagination: 400
Edition Identifiers:
- The Open Library ID: OL48688267M - OL16170155W
- Online Computer Library Center (OCLC) ID: 299046773
- ISBN-13: 9780470382776 - 9780470382783
- All ISBNs: ➤ 9780470382776 - 9786611937560 - 9781281937568 - 1281937568 - 0470382775 - 9780470382783 - 0470382783
AI-generated Review of “Clustering”:
"Clustering" Description:
Harvard Library:
This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Open Data:
COVER -- CONTENTS -- PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classification and Clustering -- 1.2. Definition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Definition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications-Genomic and Biological Sequence Clustering -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING -- 9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX
Read “Clustering”:
Read “Clustering” by choosing from the options below.
Search for “Clustering” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Clustering” in Libraries Near You:
Read or borrow “Clustering” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Clustering” at a library near you.
Buy “Clustering” online:
Shop for “Clustering” on popular online marketplaces.
- Ebay: New and used books.