Applied data mining - Info and Reading Options
By Guandong Xu
"Applied data mining" was published by CRC Press in 2013 - flu, it has 272 pages and the language of the book is English.
“Applied data mining” Metadata:
- Title: Applied data mining
- Author: Guandong Xu
- Language: English
- Number of Pages: 272
- Publisher: CRC Press
- Publish Date: 2013
- Publish Location: flu
“Applied data mining” Subjects and Themes:
- Subjects: ➤ Data mining - COMPUTERS / Database Management / Data Mining - COMPUTERS / Machine Theory - MATHEMATICS / Advanced - COMPUTERS - Database Management - Machine Theory - MATHEMATICS - Advanced - Exploration de données (Informatique)
Edition Specifications:
- Pagination: xi, 272 pages
Edition Identifiers:
- The Open Library ID: OL27151114M - OL19970921W
- Online Computer Library Center (OCLC) ID: 843955872 - 848918804 - 859779585
- Library of Congress Control Number (LCCN): 2013018723
- ISBN-13: 9781466585836
- ISBN-10: 1466585838
- All ISBNs: 1466585838 - 9781466585836
AI-generated Review of “Applied data mining”:
"Applied data mining" Table Of Contents:
- 1- Pt. I Fundamentals
- 2- 1.Introduction
- 3- 1.1.Background
- 4- 1.1.1.Data Mining-Definitions and Concepts
- 5- 1.1.2.Data Mining Process
- 6- 1.1.3.Data Mining Algorithms
- 7- 1.2.Organization of the Book
- 8- 1.2.1.Part 1: Fundamentals
- 9- 1.2.2.Part 2: Advanced Data Mining
- 10- 1.2.3.Part 3: Emerging Applications
- 11- 1.3.The Audience of the Book
- 12- 2.Mathematical Foundations
- 13- 2.1.Organization of Data
- 14- 2.1.1.Boolean Model
- 15- 2.1.2.Vector Space Model
- 16- 2.1.3.Graph Model
- 17- 2.1.4.Other Data Structures
- 18- 2.2.Data Distribution
- 19- 2.2.1.Univariate Distribution
- 20- 2.2.2.Multivariate Distribution
- 21- 2.3.Distance Measures
- 22- 2.3.1.Jaccard distance
- 23- 2.3.2.Euclidean Distance
- 24- 2.3.3.Minkowski Distance
- 25- 2.3.4.Chebyshev Distance
- 26- 2.3.5.Mahalanobis Distance
- 27- 2.4.Similarity Measures
- 28- 2.4.1.Cosine Similarity
- 29- 2.4.2.Adjusted Cosine Similarity
- 30- 2.4.3.Kullback-Leibler Divergence
- 31- 2.4.4.Model-based Measures
- 32- 2.5.Dimensionality Reduction
- 33- Contents note continued: 2.5.1.Principal Component Analysis
- 34- 2.5.2.Independent Component Analysis
- 35- 2.5.3.Non-negative Matrix Factorization
- 36- 2.5.4.Singular Value Decomposition
- 37- 2.6.Chapter Summary
- 38- 3.Data Preparation
- 39- 3.1.Attribute Selection
- 40- 3.1.1.Feature Selection
- 41- 3.1.2.Discretizing Numeric Attributes
- 42- 3.2.Data Cleaning and Integrity
- 43- 3.2.1.Missing Values
- 44- 3.2.2.Detecting Anomalies
- 45- 3.2.3.Applications
- 46- 3.3.Multiple Model Integration
- 47- 3.3.1.Data Federation
- 48- 3.3.2.Bagging and Boosting
- 49- 3.4.Chapter Summary
- 50- 4.Clustering Analysis
- 51- 4.1.Clustering Analysis
- 52- 4.2.Types of Data in Clustering Analysis
- 53- 4.2.1.Data Matrix
- 54- 4.2.2.The Proximity Matrix
- 55- 4.3.Traditional Clustering Algorithms
- 56- 4.3.1.Partitional methods
- 57- 4.3.2.Hierarchical Methods
- 58- 4.3.3.Density-based methods
- 59- 4.3.4.Grid-based Methods
- 60- 4.3.5.Model-based Methods
- 61- 4.4.High-dimensional clustering algorithm
- 62- 4.4.1.Bottom-up Approaches
- 63- 4.4.2.Top-down Approaches
- 64- Contents note continued: 4.4.3.Other Methods
- 65- 4.5.Constraint-based Clustering Algorithm
- 66- 4.5.1.COP K-means
- 67- 4.5.2.MPCK-means
- 68- 4.5.3.AFCC
- 69- 4.6.Consensus Clustering Algorithm
- 70- 4.6.1.Consensus Clustering Framework
- 71- 4.6.2.Some Consensus Clustering Methods
- 72- 4.7.Chapter Summary
- 73- 5.Classification
- 74- 5.1.Classification Definition and Related Issues
- 75- 5.2.Decision Tree and Classification
- 76- 5.2.1.Decision Tree
- 77- 5.2.2.Decision Tree Classification
- 78- 5.2.3.Hunt's Algorithm
- 79- 5.3.Bayesian Network and Classification
- 80- 5.3.1.Bayesian Network
- 81- 5.3.2.Backpropagation and Classification
- 82- 5.3.3.Association-based Classification
- 83- 5.3.4.Support Vector Machines and Classification
- 84- 5.4.Chapter Summary
- 85- 6.Frequent Pattern Mining
- 86- 6.1.Association Rule Mining
- 87- 6.1.1.Association Rule Mining Problem
- 88- 6.1.2.Basic Algorithms for Association Rule Mining
- 89- 6.2.Sequential Pattern Mining
- 90- 6.2.1.Sequential Pattern Mining Problem
- 91- Contents note continued: 6.2.2.Existing Sequential Pattern Mining Algorithms
- 92- 6.3.Frequent Subtree Mining
- 93- 6.3.1.Frequent Subtree Mining Problem
- 94- 6.3.2.Data Structures for Storing Trees
- 95- 6.3.3.Maximal and closed frequent subtrees
- 96- 6.4.Frequent Subgraph Mining
- 97- 6.4.1.Problem Definition
- 98- 6.4.2.Graph Representation
- 99- 6.4.3.Candidate Generation
- 100- 6.4.4.Frequent Subgraph Mining Algorithms
- 101- 6.5.Chapter Summary
- 102- pt. II Advanced Data Mining
- 103- 7.Advanced Clustering Analysis
- 104- 7.1.Introduction
- 105- 7.2.Space Smoothing Search Methods in Heuristic Clustering
- 106- 7.2.1.Smoothing Search Space and Smoothing Operator
- 107- 7.2.2.Clustering Algorithm based on Smoothed Search Space
- 108- 7.3.Using Approximate Backbone for Initializations in Clustering
- 109- 7.3.1.Definitions and Background of Approximate Backbone
- 110- 7.3.2.Heuristic Clustering Algorithm based on Approximate Backbone
- 111- 7.4.Improving Clustering Quality in High Dimensional Space
- 112- Contents note continued: 7.4.1.Overview of High Dimensional Clustering
- 113- 7.4.2.Motivation of our Method
- 114- 7.4.3.Significant Local Dense Area
- 115- 7.4.4.Projective Clustering based on SLDAs
- 116- 7.5.Chapter Summary
- 117- 8.Multi-Label Classification
- 118- 8.1.Introduction
- 119- 8.2.What is Multi-label Classification
- 120- 8.3.Problem Transformation
- 121- 8.3.1.Binary Relevance and Label Powerset
- 122- 8.3.2.Classifier Chains and Probabilistic Classifier Chains
- 123- 8.3.3.Decompose the Label Set
- 124- 8.3.4.Transform Original Label Space to Another Space
- 125- 8.4.Algorithm Adaptation
- 126- 8.4.1.KNN-based methods
- 127- 8.4.2.Learn the Label Dependencies by the Statistical Models
- 128- 8.5.Evaluation Metrics and Datasets
- 129- 8.5.1.Evaluation Metrics
- 130- 8.5.2.Benchmark Datasets and the Statistics
- 131- 8.6.Chapter Summary
- 132- 9.Privacy Preserving in Data Mining
- 133- 9.1.The K-Anonymity Method
- 134- 9.2.The 1-Diversity Method
- 135- 9.3.The t-Closeness Method
- 136- 9.4.Discussion and Challenges
- 137- 9.5.Chapter Summary
- 138- Contents note continued: pt. III Emerging Applications
- 139- 10.Data Stream
- 140- 10.1.General Data Stream Models
- 141- 10.2.Sampling Approach
- 142- 10.2.1.Random Sampling
- 143- 10.2.2.Cluster Sampling
- 144- 10.3.Wavelet Method
- 145- 10.4.Sketch Method
- 146- 10.4.1.Sliding Window-based Sketch
- 147- 10.4.2.Count Sketch
- 148- 10.4.3.Fast Count Sketch
- 149- 10.4.4.Count Min Sketch
- 150- 10.4.5.Some Related Issues on Sketches
- 151- 10.4.6.Applications of Sketches
- 152- 10.4.7.Advantages and Limitations of Sketch Strategies
- 153- 10.5.Histogram Method
- 154- 10.5.1.Dynamic Construction of Histograms
- 155- 10.6.Discussion
- 156- 10.7.Chapter Summary
- 157- 11.Recommendation Systems
- 158- 11.1.Collaborative Filtering
- 159- 11.1.1.Memory-based Collaborative Recommendation
- 160- 11.1.2.Model-based Recommendation
- 161- 11.2.PLSA Method
- 162- 11.2.1.User Pattern Extraction and Latent Factor Recognition
- 163- 11.3.Tensor Model
- 164- 11.4.Discussion and Challenges
- 165- 11.4.1.Security and Privacy Issues
- 166- 11.4.2.Effectiveness Issue
- 167- 11.5.Chapter Summary
- 168- Contents note continued: 12.Social Tagging Systems
- 169- 12.1.Data Mining and Information Retrieval
- 170- 12.2.Recommender Systems
- 171- 12.2.1.Recommendation Algorithms
- 172- 12.2.2.Tag-Based Recommender Systems
- 173- 12.3.Clustering Algorithms in Recommendation
- 174- 12.3.1.K-means Algorithm
- 175- 12.3.2.Hierarchical Clustering
- 176- 12.3.3.Spectral Clustering
- 177- 12.3.4.Quality of Clusters and Modularity Method
- 178- 12.3.5.K-Nearest-Neighboring
- 179- 12.4.Clustering Algorithms in Tag-Based Recommender Systems
- 180- 12.5.Chapter Summary.
"Applied data mining" Description:
The Open Library:
"In past decades, data mining has witnessed substantial advances by efforts from various communities. On the other hand, new research questions and practical challenges are continuously presented due to newly emerging topics and applications within the various fields closely related to human daily life, e.g. social media and social networking. This book aims to bridge the gap between the existing research and application progresses in traditional data mining and the latest advances in newly emerging information services. It explores the extension of well-studied algorithms and approaches into these new research arenas"--
Read “Applied data mining”:
Read “Applied data mining” by choosing from the options below.
Search for “Applied data mining” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “Applied data mining” in Libraries Near You:
Read or borrow “Applied data mining” from your local library.
- The WorldCat Libraries Catalog: Find a copy of “Applied data mining” at a library near you.
Buy “Applied data mining” online:
Shop for “Applied data mining” on popular online marketplaces.
- Ebay: New and used books.