A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity. - Info and Reading Options
By Sargsyan, Ori
"A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity." and the language of the book is English.
“A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” Metadata:
- Title: ➤ A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.
- Author: Sargsyan, Ori
- Language: English
Edition Identifiers:
- Internet Archive ID: pubmed-PMC3917834
AI-generated Review of “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.”:
"A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity." Description:
The Internet Archive:
This article is from <a href="//archive.org/search.php?query=journaltitle%3A%28PLoS%20ONE%29" rel="nofollow">PLoS ONE</a>, <a href="//archive.org/search.php?query=journaltitle%3A%28PLoS%20ONE%29%20AND%20volume%3A%289%29" rel="nofollow">volume 9</a>.<h2>Abstract</h2>This paper presents a novel population genetic model and a computationally and statistically tractable framework for analyzing within-host HIV diversity based on serial samples of HIV DNA sequences. This model considers within-host HIV evolution during the chronic phase of infection and assumes that the HIV population is homogeneous at the beginning, corresponding to the time of seroconversion, and evolves according to the Wright-Fisher reproduction model with recombination and variable mutation rate across nucleotide sites. In addition, the population size and generation time vary over time as piecewise constant functions of time. Under this model I approximate the genealogical and mutational processes for serial samples of DNA sequences by a continuous coalescent-recombination process and an inhomogeneous Poisson process, respectively. Based on these derivations, an efficient algorithm is described for generating polymorphisms in serial samples of DNA sequences under the model including various substitution models. Extensions of the algorithm are also described for other demographic scenarios that can be more suitable for analyzing the dynamics of genetic diversity of other pathogens in vitro and in vivo. For the case of the infinite-sites model, I derive analytical formulas for the expected number of polymorphic sites in sample of DNA sequences, and apply the developed simulation and analytical methods to explore the fit of the model to HIV genetic diversity based on serial samples of HIV DNA sequences from 9 HIV-infected individuals. The results particularly show that the estimates of the ratio of recombination rate over mutation rate can vary over time between very high and low values, which can be considered as a consequence of the impact of selection forces.
Read “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.”:
Read “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” by choosing from the options below.
Available Downloads for “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.”:
"A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity." is available for download from The Internet Archive in "texts" format, the size of the file-s is: 15.99 Mbs, and the file-s went public at Fri Oct 24 2014.
Legal and Safety Notes
Copyright Disclaimer and Liability Limitation:
A. Automated Content Display
The creation of this page is fully automated. All data, including text, images, and links, is displayed exactly as received from its original source, without any modification, alteration, or verification. We do not claim ownership of, nor assume any responsibility for, the accuracy or legality of this content.
B. Liability Disclaimer for External Content
The files provided below are solely the responsibility of their respective originators. We disclaim any and all liability, whether direct or indirect, for the content, accuracy, legality, or any other aspect of these files. By using this website, you acknowledge that we have no control over, nor endorse, the content hosted by external sources.
C. Inquiries and Disputes
For any inquiries, concerns, or issues related to the content displayed, including potential copyright claims, please contact the original source or provider of the files directly. We are not responsible for resolving any content-related disputes or claims of intellectual property infringement.
D. No Copyright Ownership
We do not claim ownership of any intellectual property contained in the files or data displayed on this website. All copyrights, trademarks, and other intellectual property rights remain the sole property of their respective owners. If you believe that content displayed on this website infringes upon your intellectual property rights, please contact the original content provider directly.
E. Fair Use Notice
Some content displayed on this website may fall under the "fair use" provisions of copyright law for purposes such as commentary, criticism, news reporting, research, or educational purposes. If you believe any content violates fair use guidelines, please reach out directly to the original source of the content for resolution.
Virus Scanning for Your Peace of Mind:
The files provided below have already been scanned for viruses by their original source. However, if you’d like to double-check before downloading, you can easily scan them yourself using the following steps:
How to scan a direct download link for viruses:
- 1- Copy the direct link to the file you want to download (don’t open it yet). (a free online tool) and paste the direct link into the provided field to start the scan.
- 2- Visit VirusTotal (a free online tool) and paste the direct link into the provided field to start the scan.
- 3- VirusTotal will scan the file using multiple antivirus vendors to detect any potential threats.
- 4- Once the scan confirms the file is safe, you can proceed to download it with confidence and enjoy your content.
Available Downloads
- Source: Internet Archive
- Internet Archive Link: Archive.org page
- All Files are Available: Yes
- Number of Files: 14
- Number of Available Files: 14
- Added Date: 2014-10-24 23:07:03
- Scanner: Internet Archive Python library 0.7.5
- PPI (Pixels Per Inch): 300
- OCR: ABBYY FineReader 9.0
Available Files:
1- Text PDF
- File origin: original
- File Format: Text PDF
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655.pdf
- Direct Link: Click here
2- JPEG Thumb
- File origin: original
- File Format: JPEG Thumb
- File Size: 0.00 Mbs
- File Name: __ia_thumb.jpg
- Direct Link: Click here
3- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: pubmed-PMC3917834_files.xml
- Direct Link: Click here
4- JSON
- File origin: original
- File Format: JSON
- File Size: 0.00 Mbs
- File Name: pubmed-PMC3917834_medline.json
- Direct Link: Click here
5- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: pubmed-PMC3917834_meta.sqlite
- Direct Link: Click here
6- Metadata
- File origin: original
- File Format: Metadata
- File Size: 0.00 Mbs
- File Name: pubmed-PMC3917834_meta.xml
- Direct Link: Click here
7- DjVu
- File origin: derivative
- File Format: DjVu
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655.djvu
- Direct Link: Click here
8- Animated GIF
- File origin: derivative
- File Format: Animated GIF
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655.gif
- Direct Link: Click here
9- Abbyy GZ
- File origin: derivative
- File Format: Abbyy GZ
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655_abbyy.gz
- Direct Link: Click here
10- DjVuTXT
- File origin: derivative
- File Format: DjVuTXT
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655_djvu.txt
- Direct Link: Click here
11- Djvu XML
- File origin: derivative
- File Format: Djvu XML
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655_djvu.xml
- Direct Link: Click here
12- Single Page Processed JP2 ZIP
- File origin: derivative
- File Format: Single Page Processed JP2 ZIP
- File Size: 0.01 Mbs
- File Name: PMC3917834-journal.pone.0087655_jp2.zip
- Direct Link: Click here
13- Scandata
- File origin: derivative
- File Format: Scandata
- File Size: 0.00 Mbs
- File Name: PMC3917834-journal.pone.0087655_scandata.xml
- Direct Link: Click here
14- Archive BitTorrent
- File origin: metadata
- File Format: Archive BitTorrent
- File Size: 0.00 Mbs
- File Name: pubmed-PMC3917834_archive.torrent
- Direct Link: Click here
Search for “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” downloads:
Visit our Downloads Search page to see if downloads are available.
Find “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” in Libraries Near You:
Read or borrow “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” from your local library.
Buy “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” online:
Shop for “A Framework Including Recombination For Analyzing The Dynamics Of Within-Host HIV Genetic Diversity.” on popular online marketplaces.
- Ebay: New and used books.